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ABSTRACT 

The critical analysis of the starting point of mathematical (symbolic) logic is proposed. Methodological basis of 

the analysis is the unity of formal logic and rational dialectics. It is shown that mathematical logic represents 

incorrect mathematical theory. Arguments are as follows. (1) Pure mathematics operates on mathematical 

quantity. Pure mathematics and mathematical (symbolic) logic ignore the correct methodological basis (i.e., 

criterion of truth) of science. (2) Mathematics and mathematical (symbolic) logic abolishes (deletes) essence 

(central point) of formal logic: concept and proposition (as a logical form of verbal expression (statement) of 

thought). But thought without words does not exist. If concepts and propositions as meaning contents are 

removed from consideration, then formal logic is destroyed. (3) Mathematical (symbolic) logic replaces 

proposition by the property of proposition: "truth" or "false". But the concepts "proposition" and "property of 

proposition" are not identical. In this case, the formal logic is destroyed. In addition, the concepts "proposition" 

and "property of proposition" do not represent mathematical quantities, and the concepts cannot be in 

mathematical formalism. (4) The starting point of mathematical (symbolic) logic represents several symbols that 

connect (join, unite) the words "truth" and "false" in truth tables. But words "truth" and "false" do not 

represent mathematical quantities, and words "truth" and "false" cannot be in mathematical formalism. The 

symbols are erroneously called propositional connectives. The symbols denote the words "negation", "and", 

"or", "if, then", "if and only if", etc.  (5) The symbols of common truth-functional operations are not 

mathematical symbols (i.e., symbols of mathematical operations). The definition of symbols is based on set 

theory. But set theory is an erroneous theory. Therefore, the use of these symbols in mathematical (quantitative) 

expressions is a gross mistake. (6) The essences of formal logic and mathematics are different. The qualitative 

aspect (i.e., meaning content) is the essence of formal logic; the quantitative (i.e., numerical) aspect is the 

essence of mathematics. Since formal logic has no quantitative aspect, and mathematics has no qualitative 

aspect, the union (join, conjunction, combination, synthesis) of formal logic and mathematics is a gross 

methodological error. 

Thus, mathematical logic is a thoughtless, absurd theory in science. 

Keywords: formal logic, mathematical logic, pure mathematics, philosophy of mathematics, methodology of 

mathematics, history of mathematics, higher education; history of science;, dialectics,  epistemology. 

MSC: 03A05, 03A10, 03B05, 03B30, 03B42, 03B44, 03B80, 00A30, 00A35. 

 

INTRODUCTION 

 The truth or falsity of scientific theories depends on the methodological basis used. The correct 

methodological basis (as the criterion of truth) of science is the unity of formal logic and rational 

dialectics. If a theory is based on the correct methodological basis, then the theory satisfies the criterion of 

truth. In this case, the theory is true. If a theory does not meet the criterion of truth, then the theory is 
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false. The truth (validity, verity) of the theory is the property of the theory. The falsity of the theory means 

the absence of this property. 

Mathematics in initial point and in the final analysis is quantitative science (quantitative method of 

cognition): the science of numbers and calculations. Pure mathematics operates on mathematical quantity 

and abstract numbers. Mathematical quantity has no qualitative determinacy. Therefore, abstract numbers 

have no names and represent the values of the mathematical quantity. 

Mathematical quantity and abstract numbers have no measure (measure is the philosophical category that 

designates inseparable unity (connection) of the qualitative and quantitative determinacy of an object) [1-

48]. Consequently, mathematical quantity and abstract numbers cannot be used to describe reality. As is 

shown in works [1-48], pure mathematics (including set theory) is not based on the correct 

methodological basis. This signifies that pure mathematics (including set theory) is not a correct science. 

As is known, mathematical (symbolic) logic as a branch of modern pure mathematics represents the 

following: (a) the unity of pure mathematics and formal logic; (b) “a subfield of mathematics exploring 

the applications of formal logics to mathematics” (Wikipedia); (c) mathematical representation 

(formulation) of formal logic; (d) mathematical methods of research of ways of reasoning (conclusions); 

(e) a mathematical theory of deductive methods of reasoning. Mathematical logic (symbolic logic) as a 

theory was created and developed by famous mathematicians (George Boole, Augustus De Morgan, 

Giuseppe Peano, Ernst Zermelo, David Hilbert, Kurt Gödel, Abraham Robinson, Paul Cohen, Gottlob 

Frege, Charles Peirce, Bertrand Russell and others) in the 19-20 centuries [49-59]. But this historical fact 

is not a scientific proof of the truth of mathematical logic as a theory. To date, there are no scientific 

works in the world literature, devoted to the analysis of this theory within the correct methodological 

basis. 

The purpose of this work is to analyze the starting point of mathematical logic 

within the correct methodological basis: the unity of formal logic and rational dialectics. Reliable sources 

of methodological basis are courses in formal logic and rational dialectics. 

1.  The essence of formal logic 

 1) By definition, formal logic is the science of the laws of correct thinking. The starting point and 

fundamental element of formal logic is a concept. A concept is a form of thought that expresses the 

essential features of objects and phenomena. A concept is expressed in a word or in several words 

(grammatical sentences). Concepts (thoughts) cannot be expressed without words and grammatical 

sentences. 

 2) The basis of formal logic is a system of concepts. The connection of concepts forms the structure of 

the system. The connection of concepts is expressed by the following words: “is”, “is not”, “if… is…, 

then…”, “if… is not…, then…”, “consequently”. 

 3) Proposition as a logical form of verbal expression (utterance) of thought is the essence of formal 

logic. The definition of proposition is the following: proposition is a statement (i.e., the act of thinking 

and verbal expression of thought) about the existence or non-existence of an object or phenomenon; 

proposition is a statement about the properties of an object or phenomenon of reality; proposition is 

expressed in the statement of the existence or absence of certain features of objects and phenomena. A 

proposition connects concepts that logically express objects. There are no true propositions that connect 

concepts without objects. Also, there are no true propositions that connect objects without concepts of 

objects (in this case, the connection between objects is not a logical connection!). Therefore, a proposition 
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has the following two properties: (a) the property of assertion or negation; (b) the property of truth or 

false. This property is expressed in the following words: “truth” or “false”. 

 4) The connection (combination) of propositions, which represents deriving (extracting) a new 

proposition from one or more propositions, is called inference. The new proposition is called a conclusion 

(in Latin: conclusio). Those propositions from which a new proposition is derived (extracted, follows) are 

called premises (in Latin: praemissae). The relation between premises and conclusion is the relation 

between cause and effect. Inference is based on the law of sufficient reason. 

 5) Inferences are divided into the following two groups: direct inferences and mediated inferences. If a 

conclusion (proposition) is made from only one premise (proposition), then the inference is called direct 

inference. If a conclusion (proposition) is made from several premises (propositions), then the inference is 

called mediated inference. 

 6) Such expressions (word combinations) as “predicate logic”, “quantificational logic”, “propositional 

logic”, “inferencial logic”, “logic of justification”, “logic of evidence”, “class logic”, “epistemic logic 

”,“logic of truth”, “feature logic”,“action logic”, “machine logic”, “logic of reasoning”, “decision logic”, 

“logic of strict implication”, “feature logic”, “logic of whole”, “logic of part”, etc. do not exist (are not 

allowed) in formal logic. In the point of view of formal logic, these expressions are absurd. 

Thus, formal logic has no quantitative aspect. 

2.  The essence of mathematics 

 Starting point of mathematics is the art of computing (calculating). The numbers represent the initial 

and terminal point of mathematics. “The practical application of the results of theoretical mathematical 

research is impossible without expressing the results in numerical form” (Russian Wikipedia). 

Mathematical research is based on the basic laws of formal logic: the law of identity; the law of absence 

of contradiction; the law of the excluded third; the law of sufficient reason. 

 1) Applied mathematics is used in theoretical physics. For example, the physical relationship 

t

S
v

M

M =  

(where 
MS  is a distance traveled by the material point M ; t  is time (i.e., the universal informational 

quantity) of the motion of the material point M ) 

is the mathematical definition of the speed 
Mv  of motion of the  material point M . 

 2) In the point of view of formal logic, physical quantities 
Mv  and 

MS express concrete concepts: the 

concept 
Mv  is the concept of the speed of motion of the material point M ; the concept 

MS  is the concept 

of the distance traveled by the material point M . In the point of view of rational dialectics, physical 

quantities 
Mv  and 

MS  have measures as the unities of qualitative and quantitative determinacy. In other 

words, quantities 
Mv  and  

MS  have dimensions "
sec

"
ond

meter
  and  ""meter , respectively. 

 3) Physical quantities v  and  S  also have measures and dimensions "
sec

"
ond

meter
  and ""meter , 

respectively. In the point of view of formal logic, the quantities v  and S  express abstract concepts, 

because properties of the quantities v  and S  do not belong to a concrete object. If the quantities v  and S  

did not have dimensions (i.e. properties), then the quantities v  and S  would be called mathematical 

quantities. 
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 4) The central point of pure mathematics is the expression ( )xfy = , where x  and y  are 

mathematical quantities; f  is a symbol of the functional connection of variables x  и y . The quantities 

x  and y  have no dimensions. The quantities x  and y  take only numerical values. Numerical values of 

mathematical quantities x  and y   represent unnamed neutral numbers (i.e., numbers without names and 

signs ""+   and  ""− )  [28, 31-38, 40]. Abstract numbers have no names and represent the values of a 

mathematical quantity. For example,   

)(sec

)(sec

)log(

)log(

)(

)(

ondq

ondp

ramkiq

ramkip

meterq

meterp
x === . 

Unnamed numbers cannot be used in practice to describe reality. 

 5) In the point of view of rational dialectics, mathematical quantities x  and  y  have no the measure 

as the unity of qualitative and quantitative determinacy. In the point of view of formal logic, quantities 

and numbers without qualitative determinacy (dimension) cannot be expressed in any concepts. Really, a 

concept expresses the essential features of objects and phenomena. But a mathematical quantity does not 

express the essential features of objects, because concepts of objects and phenomena do not exist in 

mathematics [28, 31-38, 40]. Therefore, a mathematical quantity cannot be defined (expressed) as a 

concept. This means that mathematical quantities are only letter symbols for unnamed neutral numbers. 

Consequently, mathematical quantities cannot be considered within the framework of formal logic [1-49]. 

 6) Mathematical expressions are constructed in the following typical way: 

 

xx = ,  axxa = ,  bxabxa +=+ , bxay += , …  ( )xfy =  

 

where a   and b  are the numbers; the variables x  (argument) and y  (function) take numerical values. 

The symbol f  signifies set of mathematical operations on the argument x . The symbols for 

mathematical operations are as follows: ""+ ,  ""− ,  ""⋅ , ":" . The symbol ""=  signifies the word “is”. The 

symbol ""≠  signifies the word “is not”. The symbols for comparison of numbers are as follows: ""= ,   

""≠ ,  ""> , ""< ,  ""≥ ,  ""≤ . The double symbol ""≥  signifies the words “equal-to-or-greater-than”; the 

double symbol ""≤  signifies the words “equal-to-or-less-than”. (The meanings of the words “less than” 

and “equal to” (also, “greater than” and “equal to”) are not intersected: there is no partial coincidence 

(intersection) between the meanings of these terms. Therefore, the word “or” has only one meaning: 

separation meaning). 

The punctuation marks "," ,  ";"  are symbols of enumeration in sequence of numbers. The punctuation 

mark "."  is the symbol of cessation of enumeration. The brackets ( ) , [ ] , }{  are symbols of indication 

(designation) of order of operations. The symbols "," ,  ";" ,  "." ,  ( ) , [ ] , }{   are separation symbols. 

The symbols ""∪  and  ""∩   are not symbols of mathematical operations, because the concept “set” is not 

a mathematical concept (“set” is a formal-logical concept). 

The symbols ""+ ,  ""− ,  ""⋅ , ":" , "," ,  ";" ,  "." ,  ( ) , [ ] , }{   represent the only and complete set 

(exhaustive set, full set) of symbols for mathematical operations on unnamed numbers. This means that 

these symbols represent a single and complete set (exhaustive set, full set) of symbols for mathematical 

operations on mathematical quantities in the final analysis. 

Thus, the essence of pure mathematics is as follows: pure mathematics abstracts away from the essential 

properties (qualitative determinacy) of quantities. Pure mathematics operates only with unnamed numbers 
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within the framework of the basic laws of formal logic (i.e., the law of identity, the law of the absence of 

contradiction, the law of the excluded middle, the law of sufficient reason). The unnamed numbers and 

the listed symbols are the essence of pure mathematics.  

Formal logic operates with concepts. Concepts and propositions are the essence of formal logic. There is 

no connection (relationship, dependence) between unnamed numbers and concepts (propositions). 

Mathematical expressions are not propositions. Consequently, there is no connection (relations) between 

the essence of pure mathematics and the essence of formal logic. The connection (relation) between the 

essence of pure mathematics and the essence of formal logic would exist if these essences were identical. 

Thus, pure mathematics has no qualitative aspect [1-49]. 

3.  The essence of mathematical logic 

 By definition, mathematical logic is: (a) a mathematical representation (formulation) of formal logic; 

(b) the unity (combination) of pure mathematics and formal logic. To join (combine) pure mathematics 

and formal logic, one must remove concepts from formal logic. If one removes concepts from formal 

logic, then the following basic laws of thinking remain: (1) the law of identity, (2) the law of absence of 

contradiction, (3) the law of the excluded third, (4) the law of sufficient reason. But if one replaces 

concepts by the words “truth” and “false”, then the laws of formal logic lose meaning. 

1) As is known, the starting point of mathematical logic is the following statements [49-59]. 

“One of the popular definitions of logic is that it is the analysis of methods of reasoning. In studying these 

methods, logic is interested in the form rather than the content of the argument. For example, consider the 

two arguments: 

1. All men are mortal Socrates is a man. Hence, Socrates is mortal. 

2. All cats like fish. Silly is a cat. Hence, Silly likes fish. 

Both have the same form: All A are B. S is an A. Hence, S is a B. The truth or falsity of the particular 

premises and conclusions is of no concern to logicians. They want to know only whether the premises 

imply the conclusion. The systematic formalization and cataloguing of valid methods of reasoning are a 

main task of logicians. If the work uses mathematical techniques or if it is primarily devoted to the study 

of mathematical reasoning, then it may be called mathematical logic. We can narrow the domain of 

mathematical logic if we define its principal aim to be a precise and adequate understanding of the notion 

of mathematical proof. 

Impeccable definitions have little value at the beginning of the study of a subject. The best way to find out 

what mathematical logic is about is to start doing it, and students are advised to begin reading the book 

even though (or especially if) they have qualms about the meaning and purpose of the subject. 

Although logic is basic to all other studies, its fundamental and apparently self-evident character 

discouraged any deep logical investigations until the late 19th century. Then, under the impetus of the 

discovery of non-Euclidean geometry and the desire to provide a rigorous foundation for calculus and 

higher analysis, interest in logic revived. This new interest, however, was still rather unenthusiastic until, 

around the turn of the century, the mathematical world was shocked by the discovery of the paradoxes –  

that is, arguments that lead to contradictions.  

Sentences may be combined in various ways to form more complicated sentences. We shall consider only 

truth-functional combinations, in which the truth or falsity of the new sentence is determined by the truth 

or falsity of its component sentences. 
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Negation is one of the simplest operations on sentences. Although a sentence in a natural language may be 

negated in many ways, we shall adopt a uniform procedure: placing a sign for negation, the symbol ¬ , in 

front of the entire sentence. Thus, if A is a sentence, then ¬ A denotes the negation of A. The truth-

functional character of negation is made apparent in the following truth table: 

 

A ¬ A 

T F 

F T 

When A is true, ¬ A is false; when A is false, ¬ A is true. We use T and F to denote the truth values true 

and false. 

Another common truth-functional operation is the conjunction: ‘and’. The conjunction of sentences A 

and B will be designated by A ∧ B and has the following truth table:  

 
A B A ∧ B 

T T T 

F T F 

T F F 

F F F 

A ∧ B is true when and only when both A and B are true. A and B are called the conjuncts of A ∧ B. Note 

that there are four rows in the table, corresponding to the number of possible assignments of truth values 

to A and B. 

In natural languages, there are two distinct uses of ‘or’: the inclusive and the exclusive. According to 

the inclusive usage, ‘A or B’  means ‘A or B or both’, whereas according to the exclusive usage, the 

meaning is ‘A or B, but not both’. We shall introduce a special sign, ∨ , for the inclusive connective. Its 

truth table is as follows:  

A B A ∨ B 

T T T 

F T T 

T F T 

F F F 

  

 Thus, A ∨ B is false when and only when both A and B are false. ‘A ∨ B’ is called a disjunction, with 

the disjuncts A and B. 

 Another important truth-functional operation is the conditional: ‘if A, then B’. Ordinary usage is 

unclear here. Surely, ‘if A, then B’ is false when the antecedent A is true and the consequent B is false. 

However, in other cases, there is no well-defined truth value. For example, the following sentences would 

be considered neither true nor false: 

1.  If 211 =+ , then Paris is the capital of France. 

2.  If 211 ≠+ , then Paris is the capital of France. 

3.  If 211 ≠+ , then Rome is the capital of France. 

Their meaning is unclear, since we are accustomed to the assertion of some sort of relationship (usually 

causal) between the antecedent and the con-sequent. We shall make the convention that ‘if A, then B’ is 

false when and only when A is true and B is false. Thus, sentences 1-3 are assumed to be true. Let us 
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denote ‘if A, then B’ by ‘A ⇒  B’. An expression ‘A ⇒  B’ is called a conditional. Then ⇒  has the 

following truth table: 

A B A ⇒  B 

T T T 

F T T 

T F F 

F F T 

 This sharpening of the meaning of ‘if A, then B’ involves no conflict with ordinary usage, but rather 

only an extension of that usage. 

 A justification of the truth table for ⇒  is the fact that we wish ‘if A and B, then B’ to be true in all 

cases. Thus, the case in which A and B are true justifies the first line of our truth table for  ⇒ ,  since (A 

and B) and B are both true. If A is false and B true, then (A and B) is false while B is true. This 

corresponds to the second line of the truth table. Finally, if A is false and B is false, (A and B) is false and 

B is false. This gives the fourth line of the table. 

 Let us denote ‘A if and only if B’ by ‘A ⇔  B’. Such an expression is called a biconditional. Clearly, ‘A 

⇔  B’ is true when and only when A and B have the same truth value. Its truth table, therefore is: 

 
A B A ⇔  B 

T T T 

F T F 

T F F 

F F T 

 

 The symbols ⇒∨∧¬ ,,,   and ⇔  will be called propositional connectives. Any sentence built up by 

application of these connectives has a truth value that depends on the truth values of the constituent 

sentences. In order to make this dependence apparent, let us apply the name statement form to an 

expression built up from the statement letters A, B, C, and so on by appropriate applications of the 

propositional connectives” [54]. 

4.  Critical analysis of the starting point of mathematical logic 

1) As is known, the scope (volume) of general concepts is expressed in the form of a class. The logical 

class is a collection of objects that have common essential features (characteristics). As a consequence, 

these objects are covered by the general concept. One class is superior to another class if it includes 

another class together with other classes. The class that is superior to another is called a genus. The class 

that is inferior to the genus is called a species.  

2) In the point of view of formal logic, the division of propositions is based on the existence of an 

essential feature (property) in one group of propositions and the absence of this feature (property) in 

another group of propositions. The proposition has the following essential feature: the property of truth or 

falsity. The property of falsity is the absence of the property of truth. There is the logical relation of 

disagreement (contradiction) between true propositions and false propositions: the feature of true negates 

the feature of falsity. The property of true or falsity of a proposition is determined within the framework 

of the correct methodological basis: the unity of formal logic and rational dialectics. The unity of formal 

logic and rational dialectics is the criterion of truth. The property of true or false is expressed by the 

following words: “truth” or “false”. The properties “truth” and “false” are contradictory. Therefore, the 
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set of propositions can be divided into two non

the “class of false proposition”: 

A

FB

 

where TA  is the “class of true propositions”, 

true proposition, the element mb  is a false proposition.

The classes TA   and 
FB  are subordinate classes (subclasses) of the generic class 

volumes (scopes) of propositions are connected by the following relationship: 

 

This relationship corresponds to the following 

 

 

Figure 1. Graphical interpretation of  the relationship  

Hence it follows that the standard relationships

and corresponding diagrams 

Figure 2. Graphical interpretation of  the relationship  

Figure 3. Graphical interpretation of the relationship 
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set of propositions can be divided into two non-overlapping classes: the “class of true propositions” 

{ }...,,...,, 21 nT aaaA = ,   Fn Ba ∉ ; 

{ }...,,...,, 21 mF bbb= ,   Tm Ab ∉  

is the “class of true propositions”, 
FB  is the “class of false proposition”, the element 

is a false proposition. 

are subordinate classes (subclasses) of the generic class 

volumes (scopes) of propositions are connected by the following relationship:  

FT BAC VVV += . 

This relationship corresponds to the following diagram: 

 

. Graphical interpretation of  the relationship  
TAC VVV +=

 

Hence it follows that the standard relationships 

FT BAC ∪= , 

FT BAC ∩=  

 
Graphical interpretation of  the relationship  T BAC ∪=

 
Graphical interpretation of the relationship FT BAC ∩= . represent formal

Temur Z. Kalanov 

overlapping classes: the “class of true propositions” and 

is the “class of false proposition”, the element na  is the 

are subordinate classes (subclasses) of the generic class C . Therefore, the 

FBV . 

FB . 

represent formal-logical errors. 
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REMARK 

 The symbols ""∪  and  ""∩  are notations of the words “or” and “and”, respectively. Therefore, the 

symbols ""∪  and  ""∩  are not symbols of mathematical (quantitative, numerical) operations, because set 

is not a mathematical concept. Set is a formal-logical concept. In the formal-logical point of view, there is 

the only one correct operation in the set theory: decomposition (partition) of set in terms of the non-

overlapping (non-intersecting) sets [41, 43]. The concepts “set” and “class” are identical. Division 

(decomposition) of a set into the non-overlapping (non-intersecting) classes represents the inverse 

operation with respect to the union of the non-overlapping (non-intersecting) classes. This implies that the 

standard operation ""∪  is wrong because the standard operation ""∩  is wrong [41, 43]. Thus, the correct 

use of the word “or” is that the word “or” must have the exclusive meaning: “given proposition or other 

proposition, but not both”. The correct use of the word “and” must have the following meaning: union of 

the non-intersecting (non-overlapping) classes. In this case, the symbol ""∪  (arises from the word 

“union”) can be used for notation of the word “and’. 

3) Proposition has two important and connected aspects: aspect of truth and aspect of content (meaning). 

Truth does not exist without content (meaning); content (meaning) is useless without truth. Therefore, the 

proposition has two important features (properties): “truth” and “content (meaning)”. “Truth” is an 

essential feature (property) of the element na  of the class TA . The elements of the class  TA  are 

independent elements. “False” is an essential feature (property) of the element mb   of the class 
FB . The 

elements of the class 
FB  are independent elements. The concepts “proposition” and “property of 

proposition” are not identical. 

(a) If one takes into account only the essential feature (property), “truth”, then one comes to the following 

uniquely correct relationship between true propositions: 

 

(truth) is (truth), 

i.e. (truth) = (truth). 

 

But mathematical logic contains standard truth tables that contradict to formal logic. For example, the 

following common truth-functional operations 

 

(false) ∨  (truth) = (truth), 

(truth) ∨  (false) = (truth); 

(false) ∧  (truth) = (false), 

(truth) ∧  (false) = (false); 

(false) ⇒  (truth) = (truth), 

(truth) ⇒  (false) = (false) 

 

represent absurd. The absurdity is that the contradictory properties (“truth” and “false”) of the elements 

na   and  mb  are in the left-hand sides of the common (united) relationships in mathematical logic. In 

addition, the symbols “ ¬ ”, “ ∨ ” ,  “ ∧ ”, “⇒ ”, “ ⇔ ”, etc. are not symbols of mathematical (quantitative) 

relationships. The symbols “ ¬ ”, “ ∨ ”, “ ∧ ”, “⇒ ”, “ ⇔ ”, etc. are symbols of qualitative relationships. 

Thus, common truth-functional operations in mathematical logic represent formal-logical errors. 
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(b) If one also takes into account the feature (property) “meaning content”, then one can establish logical 

(but not quantitative) relations between the elements (propositions) of the class TA . The property 

(feature) “meaning content” is not subject to mathematical (quantitative) operations. Establishment of 

relations between propositions is a formal-logical problem. This problem is a solved problem in formal 

logic. 

Formal-logical solution is the following statements: (i) proposition does not exist without grammatical 

(verbal) form of expression of thought; (ii) proposition is the logical content of a grammatical sentence; 

(iii) proposition is a system of concepts (i.e., connection of concepts) defined and expressed by words and 

grammatical sentences. Hence, if one removes concepts, then one removes propositions from formal 

logic. In this case, formal logic loses its scientific meaning, and science loses its correct methodological 

basis. 

Consequently, use of the symbols “ ¬ ”, “ ∨ ”, “ ∧ ”, “⇒ ”, “ ⇔ ”, etc. instead of words is meaningless, 

useless, fruitless, unsuccessful attempt of the junction of formal logic and mathematics. The main formal-

logical error in mathematical logic is that propositions are replaced by the properties: “truth” and “false”. 

Thus, the junction (unification) of formal logic and pure mathematics is impossible, because formal logic 

has no quantitative aspect, and pure mathematics has no qualitative aspect. Mathematics (as a quantitative 

science) cannot exist in formal logic; formal logic cannot be squeezed into mathematics. 

 

DISCUSSION 

1.  Why are scientists wrong? My 40 years experience of critical analysis of the foundations of theoretical 

physics and mathematics [1-48]  shows that the main causes are as follows: 

(a)  firstly, the haste and immaturity of thinking intrinsic  (proper, inherent) to youth; 

(b)  secondly, the unwillingness and inability (inefficiency, disability) of the scientist to find the correct 

methodological basis and criterion of truth; 

(c) thirdly, the reluctance of a scientist to admit (to acknowledge)  the existence of errors in science. 

2.  The essence of mathematics is that mathematics is a special science that does not rely on the correct 

methodological basis: the unity of formal logic and rational dialectics [1-48]. The unity of formal logic 

and rational dialectics represents the correct criterion of truth. Therefore, mathematics does not contain 

the dialectical concept “measure as the unity of qualitative and quantitative determinacy (aspects)”.  

Mathematics has the quantitative aspect but not the qualitative aspect. This means that mathematics does 

not contain the criterion of truth and the methodological basis [1-48]. Mathematical thinking (reasoning) 

ignores practice. Therefore, mathematical thinking (reasoning) is narrow, limited thinking (reasoning). 

3.  The essence of formal logic is that formal logic is a general science of the laws of correct thinking. 

Therefore, formal logic has the qualitative aspect (meaning content) but not the quantitative aspect. The 

unity of formal logic and rational dialectics is the correct criterion of truth and the correct methodological 

basis of science. 

4.  Junction (unification) of formal logic and mathematics is impossible as it is impossible to join 

philosophy (in particular, dialectics) and mathematics. The explanation is the fact that the essence of 

formal logic and mathematics are different. Therefore, mathematical logic is a gross methodological error. 

The desire of mathematicians to substantiate the junction of formal logic and mathematics is meaningless, 

useless, fruitless, unsuccessful effort. 
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CONCLUSION 

 A critical analysis of the starting point of mathematical (symbolic) logic within the correct 

methodological basis (i.e., the unity of formal logic and rational dialectics) leads to the following 

statements: 

(1)  Pure mathematics operates on mathematical quantity. Pure mathematics and mathematical (symbolic) 

logic ignore the correct methodological basis (i.e., criterion of truth) of science. 

(2)  Mathematics and mathematical (symbolic) logic abolishes (deletes) essence of formal logic: concept 

and proposition (as a logical form of verbal expression (statement) of thought). But thought without 

words does not exist. If concepts and propositions as meaning contents are removed from consideration, 

then formal logic is destroyed.  

(3)  Mathematical (symbolic) logic replaces proposition by the property of proposition: “truth” or “false”. 

But the concepts “proposition” and “property of proposition” are not identical. In this case, the formal 

logic is destroyed. In addition, the concepts “proposition” and “property of proposition” do not represent 

mathematical quantities, and the concepts cannot be in mathematical formalism.  

(4)  The starting point of mathematical (symbolic) logic represents several symbols that connect (join, 

unite) the words “truth” and “false” in truth tables. But the words “truth” and “false” do not represent 

mathematical quantities, and the words “truth” and “false” cannot be in mathematical formalism. The 

symbols are erroneously called propositional connectives. The symbols denote the words “negation”, 

“and”, “or”, “if, then”, “if and only if”, etc.   

(5)  The symbols of common truth-functional operations are not mathematical symbols (i.e., symbols of 

mathematical operations). The definition of symbols is based on set theory. But set theory is an erroneous 

theory. Therefore, the use of these symbols in mathematical (quantitative) expressions is a gross mistake.  

(6)  The essences of formal logic and mathematics are different. The qualitative aspect (i.e., meaning 

content) is the essence of formal logic; the quantitative (i.e., numerical) aspect is the essence of 

mathematics. Since formal logic has no quantitative aspect, and mathematics has no qualitative aspect, the 

union (join, conjunction, combination) of formal logic and mathematics is a gross methodological error. 

Thus, mathematical logic is a thoughtless, absurd theory in science. 
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ABSTRACT : 

Fuzzy inference system is a combination of fuzzy logic and fuzzy set theory. In this paper we have applied fuzzy 

inference technique for evaluation of  performance of teachers in various field. The fuzzy decision tree for 

evaluating staff performance have been drawn. A software package named Geodecision tree is used for 

computing decision trees. 

Key words: Fuzzy reasoning approach, Decision tree. 

 

INTRODUCTION  

 Fuzzy inference techniques are used in selecting teacher for awards and proposed an approach which 

is a combination of two membership functions [5]. A fuzzy expert system for select the staff's Excellence 

in academics, Excellence in co-curricular activity, Excellence in pedagogy, and Excellence in 

instructional leadership awards. Fuzzy logic techniques are used to provide practical method for staff 

awards with existing statistical method. 

 In this paper a new methodological approach using fuzzy logic reasoning has been proposed for quality 

awards to the teachers. 

 

Fuzzy logic reasoning approach via Methodology: 

 On combining Fuzzy logic and fuzzy set theory we find a fuzzy inference system. Fuzzy inference 

systems are knowledge based or rule based systems that contain descriptive if then rules created from our 

experience. The fuzzy inference system represents the core of fuzzy logic controllers and it‘s built of rule 

base and data-base which constitute the knowledge base and inference engine. The fuzzy reasoning 

approach has found a wide application in designing of certain complex industrial and management 

systems which cannot be modeled precisely under various assumptions and approximations [2]. 

A software tool named Geo decision tree is used for computing decision trees. The algorithm makes 

application of  two phase approach consisting of a FDT generation phase and a FDT concatenation phase 

in order to construct a decision tree. In the first phase, a set of FDT are generated such that there is at least 
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one decision tree composed of the FDT in the set only. In the second phase, a subset of  FDTs are selected 

and combined to form a decision tree. On the rectilinear plane, Geo decision remains the fastest exact 

algorithm for the RSMT problem but it has a limitation that on existing the obstacles in the routing plane 

it can’t be applied. 

 

Special awards for teacher: Selecting teachers for awards in the academic year we have proposed 

an approach which is a combination of membership functions. The selection of membership is 

based on his activities during the academic year. 

excellent teacher award in academic year 

� excellent teacher award in co-curricular activity 

� excellent teacher award in  psychology 

� excellent teacher award in  instructional leadership 

 

� The purposes of the award 

 The teaching excellence awards have several purposes: 

� To recognise and reward outstanding teaching 

� To recognise and reward the significant contribution made by individuals to enhancing the quality of 

learning and teaching in the institution 

� To honor, award and convey gratitude to teachers for their excellent teaching performance 

� To promote and support the highest quality teaching and learning in the institution 

� To stimulate, encourage and support new members of staff in their teaching careers  
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Fig 1.1Awards data 

 

 

Table 1.1 Results for teachers 

Examples 

 We performed many experiments used and draw a decision tree and the results are calculated on 

average rating method. Data are collected in Marudhupandiyar college Thanjavur. 

 

Excellent 

teacher award in 

co-curricular 

activity 

 

Excellent 

teacher award 

in psychology 

 

Excellent 

teacher 

award in 

instructional 

leadership 

Proactivity 
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Passion 
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Good 

planner 

The teacher 

give more 
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to the child 

Innovator 

Good 

organizer 
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provider 

Curriculum 

specialist 

Instructional 

specialist 

 

Excellent 

teacher award 

in academic 

year 

 

Awards 
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Experiment 1.1 
Teachers name Excellent 

teacher award in 

academic year 

Excellent 

teacher award in 

co-curricular 

activity 

Excellent 

teacher award in  

psychology 

 Excellent teacher 

award in  

instructional 

leadership 

Average rating 

M.VIJAYA 0.8 0.8 0.7 0.9 0.8 

Table1.2 Award in instructional leadership 

Experiment 1.2 
Teachers name Excellent 

teacher award in 

academic year 

Excellent 

teacher award 

in co-

curricular 

activity 

Excellent 

teacher award in  

psychology 

 Excellent teacher 

award in  

instructional 

leadership 

Average rating 

C.SUJATHA 0.9 0.7 0.5 0.8 0.73 

Table 1.3 Award in academic year 

 

Experiment 1.3 
Teachers name Excellent 

teacher award 

in academic 

year 

Excellent 

teacher award 

in co-

curricular 

activity 

Excellent teacher 

award in  

psychology 

 Excellent teacher 

award in  

instructional 

leadership 

 

Average 

rating 

V.MEKALA 0.6 0.9 0.4 0.6 0.63 

Table 1.4 Award in co-curricular activity 

Experiment 1.4 
Teachers  

name 

Excellent teacher 

award in academic 

year 

Excellent 

teacher award 

in co-curricular 

activity 

Excellent 

teacher award 

in  psychology 

 Excellent teacher 

award in  

instructional 

leadership 

Average 

rating 

M.RAJESH 0.5 0.6 0.9 0.6 0.65 

 

Table  1.5 Award in psychology 

 

 
 

Table 1.6  Overall championship award 
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Theorem 1.1  

 For  any k,m and n ,there exists a number N(k,m,n) such that the following is true.Let S be a total ordered 

set of size at least N(k,m,n); let P1,…,Pk be k predicates defined on S
n
. Then there exists a subset of C�S 

of size at least m such that each predicate Pi is order invariant on C
n
. 

Proof: 

Let {x1,….,xr} and {y1,….,yr} be two r element subsets of S, indexed in increasing order. We say 

that{x1,….,xr} is congruent to {y1,….,yr} if, for each mapping σ:1…n→1…r, and each 1 ≤ j≤ k. 

Pj(xσ(1),…,xσ(n))  iff  pj(yσ(1),…,yσ(n)). 

It is easy to see that this indeed an equivalence relation on [S]
r
. The number G of equivalence classes of 

this relation is bounded by 2
krn

. According to ramsey’s theorem, for any S there is a number N=N(k,s,G) 

such that, if |S|≥N, then S contains a subset S� such that |S|≥s  and all elements of [S�]
k
 belong to the 

same congruence class. 

If S is a large enough, we can repeat this process for k=1,…,n, thus building a sequence of sets 

S=C0כC1כ.…כCn=C, such that |C|≥ m, and all elements of [Ck]
k
 are congruent, k=1,…n. 

Let x and y be two order equivalent tuples in C
n
. Let x1

�
,…xk

� 
be the distinct components of x, indexed  

in increasing order, and let y1
�

,…yk
�

 be similarly defined for y. Let σ: 1…n→1…k be such that 

xi=x
�

σ(i),i=1,…,n. Since x≡y, it follows that yi=y
�

σ(i), i=1,…,n. Since {x1
�

,….,xk
�

} is congruent to 

{y1
�

,….,yk
�

} Pj(x) iff PJ(y), for j=1,…k. 

 

 
 

Fig 1.2 Decision tree 

CONCLUSION 

 Fuzzy logic reasoning approach have been used to select a teacher for awards. Finally we draw the 

decision tree model. It is very easy to select teachers for awards without ambiguity. 
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ABSTRACT  

This paper explores a deterministic inventory mathematical model for deteriorating items with cubic demand 

function with respect to time. In the model, shortages are also allowed. Further, it shows that the cubic demand 

function is convex and gives the optimal solution. A 3-Dimensional graphical representation is used to show the 

convexity of this model. An illustration is also given to verify the various effects of parameters that are used to 

calculate the total inventory cost. 

Keywords : Deterioration, Cubic demand, Shortages, Total inventory cost. 

 

INTRODUCTION 

 Inventory can be explained as the stock of goods that are stored for the effective and smooth 

functioning of trade or business. It also helps us in the enhancement of the business. It is the key point of 

manufacturers, schools, farms, hospitals, and institutions of higher education. Both retailers and 

wholesalers need to conserve inventories of items or products. It consists of various divergent conditions 

that can be converted into models. These circumstances may consist of the deterministic demand, change 

in demand with time, deterioration, etc. 

The mathematical model is distributed into two kinds, i.e., Deterministic and Stochastic models. In the 

Deterministic model, the demand rate is constant. Demand plays a very important part in inventory. In the 

classical inventory model, the demand rate was supposed to be constant, but it is not always possible.? 

The assumption of constant demand rate is not appropriate for many inventory products or items like 

fashionable things, dairy products, electronic items, fruits, and vegetables etc.; the demand rate may be 

time-dependent, price dependent, and stock dependent. The products like fruits, vegetables, drugs, dairy 

products, etc., are having a limited lifetime. They decay according to time. Such type of items or products 

is known as deteriorating items. Due to the deterioration of items or products, the inventory system faces 

many problems. 

The demand rate could also be linear in change, i.e., linearly increase or decrease in demand with time. 

For linear demand, we use linear polynomial as a demand function. Sometimes it should be a profound 

change in demand, i.e., demand is increasing so fast with relevancy time. For such increment, cubic 

polynomial demand function can be used. Cubic demand help to optimize the entire inventory cost and 

enhance the business. 



 

AJMI 13(1), Jan.-June, 2021  Suman & Vinod Kumar 

-22- 

 

Ghosh, S.K., and Chaudhuri, K.S. (2004) developed an order-level inventory model for a deteriorating 

item with Weibull distribution deterioration. Liang-Yuh Ouyang, Kun-Shan WU, and Mei-Chuan 

CHENG (2005) proposed an EOQ inventory mathematical model for deteriorating items with 

exponentially function as decreasing demand. Ajanta Roy(2008) developed an inventory model for 

deteriorating items with price dependent demand. He had also taken time dependent holding cost.C. K. 

Tripathy* and U. Mishra (2010) developed a listing model when the deterioration rate follows Weibull 

two-parameter distributions. R. Amutha and Dr. E. Chandrasekaran (2012) presented a list model for 

deteriorating products. In this model, demand was assumed as a linear function of time. Holding Cost 

takes as a linear function of time. Ravish Yadav etal (2013) shown the Volume Flexibility in Production 

Model with Cubic Demand Rate and Weibull Deterioration with partial backlogging. Venkateswarlu R. 

and Mohan R. (2014) developed a list model for deteriorating products assuming that demand rate is a 

quadratic function of time. This model is developed for optimizing the full Inventory Cost (TIC). 

Shortages are allowed and partially backlogged. Garima Sharma and Bhawna Vyas (2018) proposed a 

deterministic inventory model with Weibull distribution for deteriorating products. Demand rate assumed 

as a linear function of time within which shortages are allowed and partially backlogged. Ganesh Kumar, 

Sunita, and Ramesh Inaniyan (2020) proposed a listing model by using various parameters with a time-

dependent demand rate. The demand rate is assumed to be a cubical polynomial of time. Recently Yadav 

H, Singh T.P. & Vinod Kumar (2020) explored an inventory model for Weibull rate of deteriorating 

items, shortages, partial backlogging with quadratic demand rate. 

In this paper, the demand rate is taken as a cubical polynomial of time, and the deterioration rate varies 

with time. Ordering cost assumed to be constant and does not change with time. A 3-Dimensional 

graphical representation is used to check the convexity of this model. An illustration is also taken to 

verify the model. Sensitivity analysis of the optimal solution with respect to major parameters has been 

carried out and effects are shown. 

 

ASSUMPTIONS AND NOTATION: 

 This mathematical model is described by using the following assumptions and notations 

 Assumptions 

1. w, x, y, and z are constant. 

2. The demand rate �(�) at time t is assumed as �(�) = � + �� + 	�
 + ���;w, x, y, z is constants. 

3. Replenishment occurs. 

4. Shortages are allowed. 

5. �(�) = ��  Is deterioration rate. 

Notations 

C��  Shortage cost per unit per unit time. 

C��  Ordering cost per order. 

C��       Deterioration cost. 

C��       Holding Cost. 

� The maximum inventory level for each ordering cycle. 
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� Shortage level for each cycle. 

� The order quantity (� = � + �). 
�(�) Inventory level at time t. 

�� Time at which shortages start. 

� The total length of each ordering cycle. 

�� Total inventory cost over the period (0, T). 

 

MATHEMATICAL FORMULATION: 

The following graph (Figure 1) reveals the behavior of inventory at any time. This shows the optimal 

order quantity, which is Q, and total optimal inventory cost TC 

 

Figure 1: Inventory level (Q) vs Time 

 

The inventory level is maximum at t=0 and replenishment is made. After this, inventory level decreases 

within the time period [0, t], and ultimately falls to zero at t=t1.Further, at ��,shortages occur during the 

time interval [��, �]. 

Now till the shortages are allowed at interval [0, ��], the differential equation is given by:  !"(#)
 # + θtQ�(t) =  −(w + xt + yt
 + zt�); 0 ≤ t ≤ t�   

 And during the interval [��, �], the shortage occurs, so the differential equation is given by:-  !,(#)
 # =  −(w + xt + yt
 + zt�); t� ≤ t ≤ T  

With the boundary conditions: t=0, Q(0)=W 

T=t1; Q(t1)=0 

T=T; Q(T)=S 

Now, by solving the above equations (1), we get: 

 

��(t) = w(t� − t) + .

 (t� 
 − t
) +  /

� (t� � − t�) + 0
1 (t� 1 − t1) + 23

4 (t� � − t�) +
.3
5 (t� 1 − t1) + /3

�6 (t� 7 − t7) + 03
�
 (t� 4 − t4) − 23


 (t
t� − t�) − .3
1 (t
t� 
 − t1) −

/3
4 (t
t� � − t7) − 03

5 (t
t� � − t7) − 23,
�
 (t
t� � − t7) − .3,

�4 (t
t� 1 − t4) − /3,

6 (t
t� 7 − t8) −

03,

1 (t
t� 4 − t5) 

 

 

 

 

(2) 

(1) 

(3) 
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By solving equation (2) we get: 

Q
(t) = w(t� − t) + x
2 (t� 
 − t
) + y

3 (t� � − t�) + z
4 (t� 1 − t1)  

Now, at t=0, the maximum inventory level for each cycle is given by: 

Q(0)=W, t=0 

W = Q�(0) = wt� + x
2 t� 
 + y

3 t� � + y
4 t� 1 + wθ

6 t� � + xθ
8 t� 1 + yθ

10 t� 7 + zθ
12 t� 4  

 

And at t=T, the maximum amount of cubic demand per cycle is given by: 

t=T, Q2(t)= -S 

S = −w(t� − T) −  x
2 (t� 
 − T
) − y

3 (t� � − T�) − z
4 (t� 1 − T1) 

 

Now, the order quantity per cycle is: 

� = � + � = wt� + .

 t� 
 + /

� t� � + /
1 t� 1 + 23

4 t� � + .3
5 t� 1 + /3

�6 t� 7 + 03
�
 t� 4 − w(t� − T) −  .


 (t� 
 − T
) −
/
� (t� � − T�) − 0

1 (t� 1 − T1) 

Holding cost per unit per unit time is given by: 

Holding Cost per cycle = C�� N Q�(t)dt
#" 

6
 

Holding Cost per cycle =  C�� O2#" ,

 + .#" P

� + O/
1 + 23

�
 Q (t� 1 ) + O.3
�7 + 0

7Q (t� 7 ) + O/3
�5 − 23,

8
 Q (t� 4 ) +
O03


� − .3,
51 Q (t� 8 ) − R3,#" S

T4 − 03,#" U
�65 Q 

Shortages cost per unit per unit time is given by: 

Shortage Cost per cycle = (−) C�� N Q
(t)
X

#" 
 

(5) 

(4) 

(6) 

(5) 
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Shortage Cost per cycle =  −C�� Y w Ot� T − X,

 −  t� Q + x O#" , X


 − XP
4 −  #" P

� Q + y O#" P X
� − XZ

�
 −  #" Z
1 Q +

z O#" Z X
1 − X[

�7 −  #" [
7 Q\  

Ordering cost per order is given by: 

Ordering cost per order = C��  

Now, the deteriorating cost is given by: 

Cost due to Deterioration =   C�� YW − ` Q(t)dt #"6 \ 

Cost due to Deterioration = C�� awθt� �
6 + xθt� 1

8 + yθ t� 7
10 + zθ t� 4

12 b 

Therefore, the total cost per unit time per unit cycle is given by: 

TC = 1
T (Holding Cost per cycle + Shortage Cost per cycle + Ordering Cost per cycle

+ Cost due to Deterioration) 

TC =  C�� O2#" ,

 + .#" P

� + O/
1 + 23

�
 Q (t� 1 ) + O.3
�7 + 0

7Q (t� 7 ) + O/3
�5 − 23,

8
 Q (t� 4 ) + O03

� − .3,

51 Q (t� 8 ) − R3,#" S
T4 −

03,#" U
�65 Q −C�� Y w Ot� T − X,


 −  t� Q + x O#" , X

 − XP

4 −  #" P
� Q + y O#" P X

� − XZ
�
 −  #" Z

1 Q + z O#" Z X
1 − X[

�7 − #" [
7 Q\ + C�� +

C�� Y23#" P
4 + .3#" Z

5 + /3 #" [
�6 + 03 #" c

�
 \ 

This is the essential condition to minimize the total cost of inventory. 

  (X�)
 X = d�ef

g Y w Ot� T − X,

 −  t� Q + x O#" , X


 − XP
4 −  #" P

� Q + y O#" P X
� − XZ

�
 −  #" Z
1 Q + z O#" Z X

1 − X[
�7 − #" [

7 Q\ −
�

g, (C�� O2#" ,

 + .#" P

� + O/
1 + 23

�
 Q (t� 1 ) + O.3
�7 + 0

7Q (t� 7 ) + O/3
�5 − 23,

8
 Q (t� 4 ) + O03

� − .3,

51 Q (t� 8 ) − R3,#" S
T4 −

03,#" U
�65 Q −C�� Y w Ot� T − X,


 −  t� Q + x O#" , X

 − XP

4 −  #" P
� Q + y O#" P X

� − XZ
�
 −  #" Z

1 Q + z O#" Z X
1 − X[

�7 − #" [
7 Q\ + C��  

 (X�)
 #" = �

X h(C�� Owt� + xt� 
 + O/
1 + 23

�
 Q (t� � ) + 5 O.3
�7 + 0

7Q (t� 1 ) + 6 O/3
�5 − 23,

8
 Q (t� 7 ) + 7 O03

� −

.3,
51 Q (t� 4 ) − R3,#" k

�
 − 03,#" S
�
 Q − C��l w(T − t� ) +   x(t� T − t� 
 ) + y(t� 
 T − t� � ) + �(t� � T − t� 1 )m +

C�� Y23#" ,

 + .3#" P


 + /3 #" Z

 + 03 #" [


 \n 

We get the optimal values of �� and � by solving equation (11) & (12) by using MAPLE 15. 

(9) 

(8) 

(7) 

(10) 

(11) 

(12) 
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NUMERICAL ILLUSTRATION: 

 Now check the optimality of model with the help of numerical illustration and solve the illustration 

with the help of Maple 15.  

To explain the model numerically, assume the following parameters of the inventory system are:  

w=10, x=4, y=4, z=3, CHC=4, CSC=15, COC=100, CDC=10, θ=0.01 

Under the above-given parameters, by using Maple 15 get the optimal shortage value  

t� =1.390326758 per unit time and the optimal length of the ordering cycle is T=1.645418489 unit time.  

The total inventory cost is TC=164.7559957. 

 
Figure 2: 3-Dimensional Graphical representation of TC of Inventory Model 

SENSITIVITY ANALYSIS 

Here we study the effect of changes in the model parameters such that 

�, �, 	, �, �op, �qp, �rq , �sq , tuv �.The outcome is given in the below table: 
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Parameter 

 

% change 

 

Change in � �� � �� 

 

 

 

w 

+20% 1.697087167 1.453157350 38.99668780 177.6044323 

+10% 1.671227423 1.421739503 36.16079757 171.2408318 

-10% 1.619752925 1.359044762 30.74254882 158.1526391 

-20% 1.594331847 1.328036399 28.16488024 151.4340544 

 

 

x 

+20% 0.9787584160 0.1235135833 14.02517649 194.7019959 

+10% 0.9829409590 0.1201833112 13.92139243 193.7798063 

-10% 0.9910385970 0.1122395164 13.69957684 191.9045320 

-20% 0.1074756238 0.1074756238 13.58018821 190.9513890 

 

 

y 

+20% 1.6166579650 1.3586913780 33.77408475 167.0545215 

+10% 0.9859867036 0.1233540738 13.91894291 193.3243363 

-10% 1.6605123170 1.4070662420 33.42128120 163.5542880 

-20% 0.9890154319 0.1020593534 13.59596172 191.8874648 

 

 � 

+20% 0.9859486513 0.1285104754 13.93209826 193.4151291 

+10% 1.6200216850 1.3642191900 32.89682238 166.3133510 

-10% 1.6731915370 1.4188196510 38.97629230 163.08993520 

-20% 0.9881831938 0.1042543218 13.69362439 192.2765218 

 

 �oq 

+20% 1.562306679 1.247395801 30.12313608 173.3526512 

+10% 1.602192419 1.316958757 31.66397998 169.3423946 

-10% 1.692868107 1.468511353 35.41689607 159.4957564 

-20% 1.745684367 1.552787993 37.77243895 153.4361451 

 

 �pq 

+20% 1.689497717 1.490669752 35.28126987 174.7922702 

+10% 1.667257799 1.442533588 34.32592921 169.9724889 

-10% 1.624508734 1.333315502 32.54887196 159.0915236 

-20% 1.605344477 1.270531340 31.77612372 152.9133842 

 

 �rq 

+20% 1.691550332 1.432179886 35.34779368 176.7402864 

+10% 1.669193700 1.411999761 34.39658533 170.7895233 

-10% 1.619977623 1.366875200 32.37762862 158.6316068 

-20% 1.592543771 1.341260778 31.29569715 152.4065236 

 

 �sq 

+20% 1.643682900 1.387558143 33.33702159 164.8799108 

+10% 1.644549060 1.388940254 33.37270976 164.8180639 

-10% 1.646291209 1.391776860 33.44458897 164.6937046 

-20% 1.647167244 1.393113067 33.48078271 164.6311892 

 

 � 

 

+20% 1.643014329 1.386515883 33.50141443 164.9184147 

+10% 1.644212657 1.388416183 33.36902236 164.8361579 

-10% 1.646631918 1.392247731 33.44836821 164.6753975 

-20% 1.647853041 1.394179224 33.48843509 164.5943590 

 

� With an increase or decrease in w, TC and Q will increase or decrease, respectively. 

� With the increase in x, TC and Q decrease. 

� If CSC (Shortage Cost) and COC (Ordering Cost) increases, TC and Q willincrease.  

� If CHC (Holding Cost) increases, Q will decrease and TC willincrease.  

� If θ and CDC decreases, Q will decrease and TC will increase.  
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CONCLUSION: 

 The sensitivity analysis revealed that the model in case of cubic demand (a function of time) shows 

the deterioration rate will change with time. It shows that parameter w, CSC, COC are directly proportional 

to TC and Q while Parameter x, CDC, θ, CHC  show inverse relation with TC and Q. It also reveals that the 

total inventory cost can be obtained with this analysis. Finally, the model is verified with the help of 

graphical representation. The acquired results specify the stability of the model. The above model is very 

practical in case of constant ordering cost. This model further can be expanded or another different form 

of demand rate. 
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ABSTRACT  

In this paper the concept of arbitrary lags (start lag and stop lag) in  n-jobs, 3-machines flow shop scheduling 

problem where setup time are treated as separate from processing time and transportation time of jobs has been 

studied. The objective of the study is to propose an algorithm by which we can minimize the make-span in three 

stage flow shop scheduling problem. A numerical illustration is given to demonstrate the computational 

efficiency of proposed algorithm as a valuable analytical tool for the researchers. 

Keywords: Flow Shop, Setup Time, Shipping Time, Start Lag, Stop Lag. 

 

INTRODUCTION 

Flow shop scheduling problems are one of the widest known optimization techniques. The essence of 

scheduling algorithm is to minimize the make span in a flow shop environment. Scheduling of operations 

is very difficult issues in the planning, managing of manufacturing processes. The scheduling problems 

depend upon the important factors like transportation time breakdown effect, total elapsed time, etc.In 

general, an n job- m machine scheduling problem has [(n!).(m!)] possible outcome. Such a problem does 

not leave any space for a pen and paper solution. However by staying in the boundaries and limiting the 

number of machines to ‘three’the study has been conducted. Hence for 3 - stage flow shop scheduling 

complication with considerable set up time and arbitrary lags has been formulated and solved for the 

purpose of using it in the multiple organizations. The theory of shipping time is another important 

addition in this study. First of all in the field of scheduling theory an algorithm was introduced by  

Johnson [1] taking a scheduling problem in this problem n tasks are prepared on two machines. Mitten [2] 

treated a problem with the concept of time lags. Maggu and Das [3] established equivalent job for job – 

blocks theorem for 2 stage problem. The conception of shipping (transportation) time is very crucial in 

flow shop scheduling problem when the machines are distantly placed. Singh. T.P [4] applied the 

conception of shipping time in scheduling. Gupta, D. and Singh, T.P. [5] worked on nx2 production 

problem in which processing time are correlated with their probabilities and set up time are examined. 

Singh, T.P. and Gupta, D.[6] classified scheduling problem in which n tasks are prepared on 3 machines. 
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In it processing time of tasks and set up time of machines are correlated with probabilities including job 

block. Gupta, D. and Kumar, R. [7] studied the problem in which n tasks are prepared on two machines 

and set up time are examined separately from processing time. Gupta, D. Bala, S. and Singla, P. [8, 9] 

worked to reduce the lease cost of machines on nx2 open shop specially structured scheduling problem. 

Gupta, D and Singla, P.[10] discussed the scheduling problem with arbitrary time lags. Here we boost the 

study of Gupta, D. and Singla, P. [10] by taking the concept of set up time separated from processing time 

of jobs. 

PRACTICAL SITUATION 

 Manufacturing industries are the backbone in the economic structure of a nation, as they contribute to 

increasing G.D.P. (Gross Domestic Product) and providing employment. Productivity can be maximized, 

if the available resources are utilized in an optimized manner. Optimized utilization of resources can only 

be possible if there is a proper scheduling system. In real life we always want to minimize the elapsed 

time in the manufacturing of products. Also during the production process a foreman takes a certain time 

to set up a particular machine for the processing of a particular job and that particular time is called set-up 

time. The practical situation may be taken in a paper mill, sugar factory and oil refinery etc. where various 

qualities of paper, sugar and oil are produced. The majority of scheduling research assumes set up as 

negligible. While this assumption adversely affects solution quality for many applications which require 

explicit treatment of setup, includes work to prepare the machine for processing. This includes obtaining 

tools, positioning work-in-process material, return tooling, cleaning up, adjusting tools and inspecting 

material and hence significant.  

 

ASSUMPTIONS. 

(1)  No passing is allowed. 

(2)  Each operation once started must performed till completion. 

(3)  Jobs are independent to each other. 

(4)  No job may be processed by more than one machine at a time. 

 

NOTATIONS. 

S:  Sequence of job 1, 2, 3,...., n. 

Mj:  Machine j, j=1, 2, 3,...., m. 

Ai:  Processing time of ith job on machine M1. 

Bi:  Processing time of ith job on machine M2. 
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Ci:  Processing time of ith  job on machine M3. 

Si1:  Set Up time of ith job on machine M1. 

Si2:  Set Up time of ith job on machine M2. 

Si3:  Set Up time of ith job on machine M3. 

Di1:  Start lag of ith job from machine M1 to M2. 

Ei1:  Stop lag of ith job from machine M1 to M2. 

Di2:  Start lag of ith job from machine M2 to M3. 

Ei2:  Stop lag of ith job from machine M2 to M3. 

ti: Transportation time of ith job from M1 machine to M2 machine. 

gi:  Transportation time of ith job from M2 machine to M3 machine. 

��
′ :  Effective transportation time of ith job from M1 machine to M2 machine. 

��
′ :  Effective transportation time of ith job from M2 machine to M3 machine. 

 

 

PROBLEM FORMULATION 

 In this problem n - tasks are processed on three machines with processing time separated from setup 

time including shipping time and arbitrary time lags of tasks given below in table: 

Jobs Machine 

M1 

Shipping 

Time 

Machine M2 Shipping 

Time 

Machine M3 Start Lag Stop Lag 

I. Ai Si1 ti Bi Si2 gi Ci Si3 Di1 Di2 Ei1 Ei2 

1. A1 S11 t1 B1 S12 g1 C1 S13 D11 D12 E11 E12 

2. A2 S21 t2 B2 S22 g2 C2 S23 D21 D22 E21 E22 

3. A3 S31 t3 B3 S32 g3 C3 S33 D31 D32 E31 E32 

….. ….. ….. ……. ….. ….. ….. ….. ….. ….. ….. ….. ….. 

n. An Sn1 tn Bn Sn2 gn Cn Sn3 Dn1 Dn2 En1 En2 

 Obtained optimal sequence of jobs so as minimize the make-span. 

 

ALGORITHM: 

Step1. First of all we described effective shipping time ��
� and ��

� from machine M1 to M2 and from 

machine M2 to M3 respectively as follows: 

��
�= max(Di1 – Ai, Ei1 – Bi, ti ) 

��
�= max(Di2 – Bi, Ei2 – Ci, gi ) 

Step2: Check the condition 

either Min{Ai+ ��
�– Si2} ≥ Max{Bi + ��

� – Si1} 
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or Min{Ci + ��
� – Si2} ≥ Max {Bi + ��

� – Si3} or both for all i 

If the conditions are satisfied then go to step 3, else the data is not in the standard form. 

Step3: Introduce the two fictitious machines G and H with processing times Gi and Hi as 

Gi = Ai+ Bi + max (Si1 , Si2) + ��
� , Hi= Bi+ Ci–max(Si2,Si3)+ ��

� 

Step4: Using Johnson’s procedure, obtain an optimal sequence S having minimum elapsed time. 

Step5: Prepare In – Out tables for optimal sequence S and compute total elapsed time. 

 

NUMERICAL ILLUSTRATION 

 Considered 5 jobs are processed on three machines with processing time separated from setup time 

including shipping time and also considered arbitrary lags (start lag and stop lag) 

Jobs Machine 

M1 

Shipping 

Time 

Machine M2 Shipping 

Time 

Machine M3 Start Lag Stop Lag 

I. Ai Si1 ti Bi Si2 gi Ci Si3 Di1 Di2 Ei1 Ei2 

1. 3.2 0.6 2 0.8 0.7 2 1.2 0.6 4 2.8 2 2 

2. 3.6 1.4 1 1.2 1.8 1 1.6 1.2 4.6 1.8 1.8 2 

3. 2.6 1.2 2 1 1.2 2 3 1.2 2.8 3 2 4 

4. 3 2.1 3 0.8 0.3 3 0.8 0.5 4 3.8 3.2 2.4 

5. 1.4 2.4 4 1.2 0.6 1 1.8 0.8 3.8 2 5.2 2.5 

 Obtained optimal sequence of jobs so as minimize the make-span. 

 

SOLUTION: 

Step1:First of all we described effective shipping time��
�  and ��

�  from machine M1 to M2 and from 

machine M2 to M3 respectively as follows: 

��
�= max(Di1 – Ai, Ei1 – Bi, ti )      ��

�= max(Di2 – Bi, Ei2 – Ci, gi ) 

 

Jobs Machine 

M1 

Effective Shipping 

Time 

Machine 

M2 

Effective Shipping 

Time 

Machine 

M3 

I. Ai Si1 ��
� Bi Si2 ��

� Ci Si3 

1. 3.2 0.6 2 0.8 0.7 2 1.2 0.6 

2. 3.6 1.4 1 1.2 1.8 1 1.6 1.2 

3. 2.6 1.2 2 1 1.2 2 3 1.2 

4. 3 2.1 3 0.8 0.3 3 0.8 0.5 

5. 1.4 2.4 4 1.2 0.6 1 1.8 0.8 

Step2: Now we go through the conditions which we discussed in the algorithm step 2, and here Min{Ai+ 

��
�– Si2} ≥ Max{Bi + ��

� – Si1}condition is fulfilled. So we discover two fictitious machines G and H with  
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their processing time Gi and Hi as follows: 

Gi = Ai + Bi + max (Si1 , Si2) + ��
�  , Hi = Bi + Ci+ max(Si2,Si3)+ ��

� 

 

Jobs Factious Machine G Factious Machine H 

I Gi Hi 

1. 6.7 4.7 

2. 7.6 5.6 

3. 6.8 7.2 

4. 8.9 6.1 

5. 9 4.8 

Step3: Now by adopting Johnson’s technique, optimal sequence is S = 3,4,2,5,1 

 

Step4:we define In-Out data for sequence S is as follows: 

Jobs Machine 

M1 

��
� Machine 

M2 

��
� Machine 

M3 

I. In-Out In – Out In – Out 

3. 0 –2.6 2 4.6- 5.6 2 7.6 – 10.6 

4. 3.8 – 6.8 3 9.8 – 10.6 3 13.6 – 14.4 

2. 8.9 – 12.5 1 13.5 – 14.7 1 15.7 – 17.3 

5. 13.9 – 15.3 4 19.3 – 20.5 1 21.5 – 23.3 

1. 17.7 – 20.9 2 22.9 – 23.7 2 25.7 –26.9 

 Minimum total elapsed time for the given complication is 26.9 units. 

 

REMARK 

The model presented in the section is near to real time of left communication. Our study provides a 

guideline to be system based on optimal continue policy. This study deals with the production scheduling 

problem with the leading intention to reduce the total production time of tasks. The work can be boosted 

by taking varied parameters like job block criteria, break-down interval, mean weightage time etc. 
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ABSTRACT : 

In this paper, we consider the shortest path problem in hyper-graphs. We develop two algorithms for finding and 

maintaining the shortest hyper paths in a dynamic network with both weight and topological changes. These two 

algorithms are the first addressing the fully dynamic shortest path problem in a general hyper-graph. They 

complement each other by partitioning the application space based on the nature of the change dynamics and 

the type of the hyper-graph.  
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1.  INTRODUCTION 

 A graph is a basic mathematical abstraction for modeling networks, in which nodes are represented by 

vertices and pair- wise relationships are represented by edges between vertices. A graph is thus given by a 

vertex set V and an edge set E consisting of cardinality-2 subsets of V. A hyper-graph is a natural 

extension of a graph obtained by removing the constraint on the cardinality of an edge: any non-empty 

subset of V can be an element (a hyper-edge) of the edge set E (see Fig 1). It thus captures group 

behaviors and higher-dimensional relationships in complex networks that are more than a simple union of 

pairwise relationships. Examples include communities and collaboration  teams  in  social  networks,  

document  clusters in  information  networks,  and  cliques,  neighborhoods, and multicast groups in 

communication networks. 

v2

e2

e6

e5

e4

e3e3

e1

v4

v10

v11

v5

v7

v8

v9

v6v1

v3

 
Fig.1. An  example  hyper-graph  with  6  hyper edges:  (v1 , v2 , v3 , v6 ), (v2 , v3 , v4 , v5 ),  

(v6 , v7 v8 , v9 ), (v5 , v8 , v9 ) , ( v4 , v10) and (v10  ,v11). 
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 While the concept of hypergraph has been around since1920's (see, for example, [1]), many well-

solved algorithmic problems in graph theory remain largely open under this more general model. In this 

paper, we address the shortest path problem in hyper graphs. 

 

A.  Shortest Path Problem in Graphs 

 The  shortest  path  problem  is  perhaps  one  of  the  most basic problems in graph theory. It asks for 

the shortest path between  two  vertices  or  from  a  source  vertex  to  all  the other vertices (i.e., the 

single-source version or the shortest path tree). Depending on whether the edge weights can be negative, 

the problem can be solved via Dijkstra’s algorithm or Bellman-Ford algorithm [2]. This basic problem 

finds diverse applications in communication networks, operational research, plant and facility layout. etc., 

The dynamic version of  the shortest path problem is  to maintain the shortest path tree without 

recomputing from scratch during a sequence of changes to the graph. A typical change to a graph includes 

weight increase, weight decrease, edge insertion, and edge deletion. The last two types of changes model 

network topological changes, but they can be conceptually considered as special cases of weight changes 

by allowing weight to be infinity. Thus, if the sequence of changes contains only weight increase and 

edge deletion, we call it a decremental problem; if it contains only weight decrease and edge insertion, we 

call it an incremental problem. Otherwise, we have a fully dynamic problem. If multiple edges change 

simultaneously, then it is called a batch problem. 

 

B.  Shortest Path Problem in Hyper graphs 

 Both the static and dynamic shortest path problems have a corresponding version in hyper graphs. The 

static shortest hyper path problem was considered by Knuth [4] and Gallo   et al., [5], in which Dijkstra’s 

algorithm was extended to obtain  the  shortest  hyper paths. Knuth’s  algorithm is  for  a special class of 

hyper graphs while Gallo’s algorithm is for a  general hyper graph. Ausiello  et  al.,  proposed a  dynamic 

shortest hyperpath algorithm for directed hyper graphs, considering only the incremental problem with the 

weights of all hyper edges limited to a finite set of numbers [6, 7]. A dynamic algorithm for the batch 

problem in a special class of hypergraphs was developed in [3]. 

Referred to as the Hyper Edge based Dynamic Shortest Path algorithm (HE-DSP), the first algorithm is 

an extension of the dynamic Dijkstra’s algorithm for graphs to hypergraphs (parallel to Gallo’s extension 

of the static Dijkstra’s algorithm to hyper graphs in [4]). The extension of the dynamic Dijkstra’s 

algorithm to hyper graphs is more involved than that of the static Dijkstra’s algorithm. This is due to the 

loss of the tree structure  in the collection of the shortest hyperpaths from a source to all other vertices. 

Since the dynamic Dijkstra’s algorithm relies on the tree structure to update the shortest paths after an 

incremental change (weight increase or edge deletion), special care needs to be given when extending it to 

hyper graphs. 

The second algorithm is rooted in the idea of Dimension Reduction and is referred to as DR-DSP. The 

basic idea is to reduce  the  problem  to  finding the  shortest  path  in  the underlying graph of the hyper 

graph. The underlying graph of a hyper graph has the same vertex set and has an edge between two 

vertices if and only if there is at least one hyper edge containing these two vertices in the original 

hypergraph. The weight of an edge in the underlying graph is defined as the minimum weight among all 

hyperedges containing the two vertices of this edge. The shortest hyper path in the hyper graph can thus 

be obtained from the shortest path in the underlying graph by substituting each edge along the shortest 
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path with the hyper edge that lent its weight to this edge. The correctness and advantage of this algorithm 

are readily seen: the definition of weight in the underlying graph captures the minimum cost offered by all 

hyper edges in choosing a path between two vertices, thus ensuring the correctness of the algorithm; the 

reduction of a hyper graph to its underlying graph removes many hyper edges from consideration when 

finding the shortest path, leading to efficiency and agility to dynamic changes. 

HE-DSP is more efficient in hyper graphs that are densely connected through high-dimensional hyper 

edges and for net- work dynamics where changes often occur to hyper edges that are not on the current 

shortest hyperpaths. DR-DSP has lower complexity when hyper edge changes often lead to changes in the 

shortest hyperpaths. This is usually the case in networks where hyper edges in the shortest hyper paths are 

more prone to changes due to attacks, frequent use, or higher priority in maintenance and upgrade. 

Furthermore, DR-DSP leads to an alternative algorithm for solving the static shortest hyper path problem 

when the dynamic problem degenerates to the static problem. It has  the  same  complexity as  Gallo’s 

algorithm for a general hyper graph and lower complexity for simplicial complexes (a special class of 

hyper graphs whose hyper edge set is closed under the subset operation). We also point out that both 

proposed algorithms apply to directed hyper-graphs with minor modifications in their implementation 

details. 

A detailed time complexity analysis of these two algorithms is provided to demonstrate their performance 

in the worst- case change scenario. Using a random geometric hyper graph model and a real data set of a 

social network,  we  study the  average performance of  these two algorithms in different scenarios and 

demonstrate the partition of the application space between these two algorithms. In the experiment with 

Enron email data set, the proposed algorithms successfully identified the most important actor in this 

social network using the closeness centrality metric. 

 

2. DYNAMIC SHORTEST HYPERPATH PROBLEM 

 We introduce some basic concepts of hyper graph [1] and Some basic properties of the shortest hyper 

paths define the static and the dynamic shortest hyper path problems. Some basic properties of the 

shortest hyper paths are established and will be used in developing the dynamic algorithms 

A. Hyper-graph and Hyper path 

Let V be a finite set and E a family of subsets of V. If for all elements ei ∈ E, the following conditions are 

satisfied : 
i

e ϕ≠ , EeI ∈
∪ ,Vei =  then the couple ),( EVH =  is called a (undirected) hyper-graph. Each 

element v V∈ is called a vertex and each element e E∈ a hyper edge. 

A weighted undirected hyper-graph is a triple ( , , )H V E w=  with : { {0}}w E R
+

→ ∪  being a 

nonnegative weight function defined for each hyper edge in E. In a hyper graph, a hyper path is defined as 

follows.  

Definition 2.1 : A hyperpath between two vertices u and v is a sequence of hyper edges {e0, e1,..., em} 

such that 0 , mu e v e∈ ∈  and 1i ie e ϕ
+

∩ ≠  for 0,....., 1.i m= −  A hyper path is  simple  if  non-adjacent hyper 

edges in  the  path  are  non- overlapping, i.e., , , 1
i j j

e e i iϕ∩ = ∀ ≠ ± . 

Let  0,{ .... }
e m

L e e=  be  a  hyper path in  a  weighted  hyper graph H . We define the weight of eL
 as:  

  
0

( ) ( )
m

S i

i

w L w e
=

=∑        ……………….(2.1) 
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Fig.2 Hyper paths and the associated relationship trees. 

 

B.  Shortest Hyper path and Relationship Tree 

 Given two vertices u and v, a natural question is to find the shortest hyper path (in terms of the path 

weight) from u to v. Since the weight function is nonnegative, it suffices to consider only simple hyper 

paths. If the shortest hyper path is not simple, we can always generate a simple hyper path without 

increasing the weight by deleting all the hyper edges between two overlapping non-adjacent hyper edges. 

The dynamic shortest hyper path problem can be similarly defined for a sequence 1 2{ , ,.... )lc δ δ δ= of 

hyper edge changes. Hyper edge changes have  the  same  six  types  as edge changes in a graph: weight 

increase, weight decrease, hyper edge insertion, and hyper edge deletion. Similarly, weight increase and 

hyperedge deletion will be treated together, so are weight decrease and hyper edge insertion. 

Lemma 2.1 : Let 1, 2{ ,.... }
v l

L e e e=  be a shortest hyper path from 1s e∈ to lz e∈ . Then for any vertex 

1i iv e e
+

∈ ∩ , the hyperpath 1, 2{ ,.... }
v l

L e e e= is a shortest hyper path from s to v. Furthermore, for any two 

vertices 1, i iu v e e
+

∈ ∩ (if there exist at least two vertices in 1i ie e
+

∩ ), D[u] = D[v]. 

Proof :  We  will  prove  by  contradiction.  Assume  that 1, 2{ ,.... }
v l

L e e e= is  not  a  shortest  hyperpath 

for v. Then there exists a different hyper path ' ' ' '

1 2{ , ,.... }
v k

L e e e=  with '( ) ( )
v V

w L w L= . Then consider the 

hyper path ' ' ' '

1 2 1 2{ , ,.... , , ,... }
k i i l

L e e e e e e
+ +

= , we have '( ) ( )w L w L=  which contradicts the fact that L  is a 

shortest hyper path to z. This completes the proof for the first part of the lemma. Furthermore, for any two 

nodes 1, i iu v e e
+

∈ ∩ , since vL is the shortest hyper path for both vertices, [ ] ( ) [ ]vD v w L D u= =   

            …………(2.2) 

 Next, we introduce the concept of relationship tree that is needed in the proposed dynamic shortest 

hyper path algorithm HE-DSP. Since two adjacent hyper edges in a hyper path may overlap at more than 

one vertex, the shortest hyper paths from s to all other vertices do not generally form a tree in the original 

graph sense. For the development of the dynamic shortest hyper path algorithms, we introduce the 

concept of relationship tree to indicate the parent-child relationship along shortest hyper paths. The 

concept can be easily explained in the example given in Fig 2. Let 1, 2 3{ . }e e e  be a shortest hyper path from 

s to 6v . By Lemma 2.1, {e1} is a shortest hyper path for both 1v  and 2v . As illustrated in Fig 2, there are 6 

possible relationship trees to indicate the parent-child-teacher relationship in these shortest hyper paths. 

The choice of the relationship tree does not affect the correctness or performance of the proposed 

algorithm HE-DSP. 
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Similar notations are used for dynamic shortest hyper path algorithms : [ ]D v  denotes the distance of a 

vertex v  to the source s on  the  shortest  hyper path, [ ]P v  the  parent  of  v  in the chosen relationship 

tree associated with the shortest hyper paths. A new notation is [ ]E v , the hyper edge containing s and 

[ ]P v  on the shortest hyper path  (i.e., the hyper edge that leads to v  from [ ]P v  on the shortest hyper 

path). When it is necessary to distinguish the shortest distance before and after a weight change, [ ]d v  

denotes the shortest distance before the change, '[ ]d v  the shortest distance after the change, and [ ]D v  the 

actual value stored in the data structure during the execution of the algorithm. 
 

3. HYPER EDGE BASED DYNAMIC SHORTEST PATH ALGORITHM (HE-DSP) 

We propose HE-DSP. It is an extension of the dynamic Dijkstra’s algorithm to hyper graphs. The 

extension is more complex than Gallo’s extension of the static Dijkstra’s algorithm, since the dynamic 

Dijkstra’s algorithm relies on the tree structure of the shortest paths, a structure no longer there for the 

shortest hyper paths. 

Consider that the weight of a  hyper edge eˇ  decreases to 
new

w Similar to the case for graphs, we know that 

the vertex x e∈ %  with [ ] min { [ ]}v eD x D v
∈

= % will not be affected. We then check whether the other vertices 

in e%  are affected bychecking the inequality given in (1), and put all the affected vertices into a priority 

queue v . The rest of the procedure is similar to that for graphs, only when we update the distance of a 

vertex, we check all the hyper edges that contain this vertex. 

HE-DSP: Weight Decrease ( , )newe w%  

Step 0 (Update the hyper graph) 

1 newwew ←)(
(

 

      Step1 (Determine the affected vertices in e) 

2      { }][minarg vDx ev
(

∈←   

3       for each ev
(

∈  such that ][][ vDwxD new <+   do 

4       D[v] ← D[x] + wnew ; P [v] ← x; E[v] ← eˇ 

5       Enqueue )][,,( vDVQ  

6       end 

      Step2 (Iteratively enqueue and update affected vertices) 

7     while NonEmpty (Q)  do 

8       ←][, zDz  ← Dequeue(Q) 

9     for each e Ee∈  ∈ E  s.t. ez ∈  

10     for each ev ∈  

11 if  )(][][ ewzDvD +>  then 

12  evEzvPewzDvD ←←+← ][;][);(][][  

13  Enqueue or Update )][,,( vDVQ   

14  end; end; end; end 

Theorem 3.1 :  If before the weight decrease, ][],[][ vEvdvD =   and  ][vP   are  correct  for  all Vv ∈ , 

then  after  the weight decrease,  ][][ '
vdvD = D′[v] and ][vE and ][vP  are correctly. 
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Proof` 

Lemma 3.1: Let { }][minarg vdx ev
(

∈= , then ][][ '
xdxd =  and ]}[{min][ ''

vdxd ev
(

∈=  

Proof : Proof by contradiction. Assume that ][][' xdxd <  ,then  x  has to use e
(

 on its new shortest hyper 

path. Since we consider only simple hyper paths and ex
(

∈ , we have                  exE
(

=][ . Therefore its 

parent ][vPy =  cannot use e
(

  on its shortest hyper path, which implies that the shortest distance to y

doesnot change: ][][ '
ydyd = . Given that y  is the parent of x  on its new shortest hyper path, we have 

][][][][ ''
xdxdydyd <≤= which contradicts to the definition of x . 

    For the second statement, assume there exists ez
(

∈  such that ][][ ''
xdzd <  .  Based  on  the  definition 

of  x   and  the hypothetical assumption, ][][][][ ''
zdxdxdzd >=≥ . It thus follows that z ’s shortest 

hyperpath changes and ezE
(

=][  in the new shortest hyper path. Follow the same line of arguments by 

considering the parent of z , we arrive at the same contradiction in terms of the definition of x . 

Lemma 3.2 : For any vertex v , v  is enqueued into Q  if and only if ][][' vdvd < . 

Proof : Consider first that v  is enqueued into Q . From the algorithm, this can only happen if there exists 

a neighbor z  and a hyper edge ve ∋  , z  such that ][)(][ vDewzD <+ . We thus have 

][)(][][][ '
vdewzDvDvd ≥+>≥ . 

 We  now prove the converse. Assume that ][][' vdvd < . Le t },,{ ,......,1,.....2,1 lii eeeeeep +=
(

 be v’s new 

shortest hyperpath. There exists ui+1 ∈ eˇ ∩ ei+1  such that d′[ui+1] < d[ui+1]. In Step 1 of the algorithm, ui+1 

is enqueued. Similarly, there exists ui+2 ∈ ei+1 ∩ ei+2  with d′[ui+2] < d[ui+2]. Then 2+iu will be enqueued in 

Step 2 of the algorithm when 1+iu  is dequeued if it has not been enqueued before that. Repeating this line 

of argument, we conclude that there exits  lll eeu I1−∈ with ][][' ll udud <  and lu   is enqueued into Q . 

Then v will be enqueued when lu   is dequeued if it is not enqueued already. 

Lemma 3.3 : For each v  dequeued from Q , D[v] = d′[v]. 

Proof : We first show that if u is dequeued before v, then D[u] ≤ D[v] at the instants when they are 

dequeued. We prove this by induction. The initial condition holds trivially. Then assume it is true for the 

first l dequeued vertices lzz ,.......,1 . Consider the )1( +l th dequeued vertex 1+lz  . At the instant when lz   is 

dequeued, if ][ 1+lzD   is updated based on ][ lzD  in Step 2, then ][][ 11 +< lzDzD  even after the update. If, 

on  the  other hand, ][ 1+lzD   is  not  updated at  this  instant, then ][][ 11 +≤ lzDzD  given that the dequeued 

vertex has the smallest distance. 

Next, we prove the lemma by induction. From Step 1 of the algorithm, all the affected vertices v in eˇ will 

be dequeued first with E[v] = eˇ, P [v] = x, and D[v] = d′[x] + w(eˇ).  

Based on Lemma 2, D[v] ≤ d′[u] + w(eˇ) for any u ∈ eˇ. It thus follows that the hyperpath to v through x 

and eˇ is the shortest one with D[v] = d′[v].Assume for z1, . . . , zl, D[zi]  = d′[zi] are satisfied for all 

li ,....1= . Consider the )1( +l  th dequeued vertex ezl

(
∈+ 61   . Let ][ 1+= lzPu  be its parent in the new 

shortest hyper path. Then based on the fact that distances of the dequeued vertices are monotonically 

increasing with the order of the dequeueing as  shown at  the  beginning of  the  proof, u  cannot be  any  

vertex dequeued after 1+lz . Since ezl

(
∈+ 61 ,  it is also  clear that u  cannot be an  unaffected vertex will  be 

unaffected, which contradicts Lemma 3). We thus have { }lzzu ,.....1∈  . Let izu =  .  Then when iz  is 

dequeued, ][ 1+lzD  will be updated to the shortest distance ][ 1

'

+lzd due to the induction hypothesis of

][][ '

ii zdZD =  . This completes the proof. . 



 

Fully Dynamic Shortest Path Algorithms for General Hyper-graphs 

-41- 

B. Hyperedge Weight Increase 

 The coloring process in the graph case relies on the tree structure of the shortest paths, which is no 

longer present in the shortest hyper paths. Our solution is to use a relationship tree for the coloring 

process, and we prove the correctness of this approach regardless of the choice of the relationship tree. 

Consider that the weight of a hyper edge eˇ increases to wnew. First, we redefine the color of a vertex   v 

based on the chosen relationship tree. 

(i)    v  is  colored white  if  d′[v]  = d[v]  while keeping the current P [v] and E[v]. 

(ii)   v is colored pink if d′[v] = d[v], but only possible through a new P [v] or E[v] or both. 

(iii)   v is colored red if d′[v] < d[v]. 

With the above modified definitions of colors, the same coloring process as in the graph case can be 

carried out using a relationship tree. The algorithm is given below. 

HE-DSP: Weight Increase(e?, wnew ). 

Step0 (Update the hyper graph) 

1 w(e?) ? wnew 

Step1 (Determine the affected vertices in e) 

2  for each v ? e? s.t. E[v] = e? do 

3 Enqueue (M, hv, D[v]i) 

Step2 (Coloring process) 

4 while NonEmpty (M) ** 

5 hz, D[z]i ? Dequeue(M ) 

6  if ?  nonred q ? V   s.t. ?e ? E  with q, z ? e and 

 D[q] + w(e) = D[z] 

7  then z is pink; P [z] = q; E[z] = e; 

8  else z is red; Enqueue(M , all z's children) 

9  end; end 

Step3.a (Initialize the distance vector for red vertices) 

10  for each red vertex z do 

11 if z has no nonred neighbor 

12  then D[z] ? +?; P [z] ? Null 

13 else 

14 let u be the best nonred neighbor of z 

15 E[z] ? argmine? E,e?u,z {w(e)}; 

16 D[z] ? D[u] + w(E[z]); P [z] ? u; 

17 Enqueue(Q, hz, D[z]i) 

18 end; end; end 

Step3.b: Step2 of HE-DSP: Weight Decrease 

The theorem below states the correctness of the algorithm 

Theorem 3.2: If  before the weight increase, D[v]  = d[v], E[v] and P [v] are correct for all v ∈ V , then 

after the weight increase, D[v] = d′[v]  and also E[v]  and P [v] are correctly 

updated. 

Proof : We first show the correctness of the coloring process as given in the following lemma. 

Lemma 3.4 : The  coloring  process  correctly  colors  all  the affected vertices. 
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G

Proof : We first state the following simple facts without proof: given a relationship tree, after the hyper 

edge weight increase, (i) if v is pink or white, then all its descendent in this relationship tree are white; (ii) 

if a v is red, then all its children in the relationship tree are either pink or red; (iii) if a v is affected, either 

v ∈ eˇ or P [v] is red. These facts can be directly obtained from the definition of the color. It is also easy 

to see that vertices are dequeued from M  in a non decreasing order of their current distance D[·]. This is 

because each time a vertex z is dequeued from M , the possible new vertices to be enqueued into M are 

z’s children with distances no smaller than D[z]. 

Then, the proof of the lemma has two parts: first we prove that all affected vertices are enqueued into M ; 

then we prove by induction that only affected vertices are enqueued into M and their colors are correctly 

identified. 

We prove the first part by contradiction. Assume that there exists an affected vertex v that is not enqueued 

into M . It is easy to see that v 6∈ eˇ because all the affected vertices in eˇare enqueued in Step 1. Based 

on the third fact stated above, P [v] is red. Based on the hypothesis, P [v] is not enqueued . Continue this 

line of arguments, we eventually reach the root of the relationship tree and arrive at the contradiction that 

the source s is red. 

We prove the second part by induction. It is easy to see that all the vertices initially enqueued into M are 

affected vertices. It remains to show that the first vertex lz  dequeued from M  is colored (pink or red) 

correctly. To show that, we need to establish that the algorithm correctly determines whether there is an 

alternative shortest hyperpath to lz   with the same distance, i.e., ][][ 1

'
zdzd l =  .  The key here is to show 

that checking the currently non-red neighbors of lz  will not lead to a false alternative path. This follows 

from the fact that lz   has the smallest distance D[·]  among all affected vertices. 

Next, assume It is not difficult to see that P [·] and E[·] are correctly updated that vertices lzz ,.......,1  

dequeued from M are all affected vertices and are correctly colored. Consider the next dequeued vertex 

1+lz . It is an affected vertex because it is either enqueued in Step 1 with E[v] = eˇ or enqueued in Step 2 

with a red parent. To show that 1+lz  will be colored correctly, we use a similar argument by showing that 

the currently non- red neighbors of zl+1 will not give a false alternative path. The latter follows from the 

fact that all affected vertices will be enqueued and those dequeued after 1+lz  have distances no smaller 

than ][ 1+lzD . This completes the induction. 

 

4.  DIMENSION REDUCTION BASE D DYNAMIC SHORTEST PATH ALGORITHM (DR-DSP) 

 In this section, we propose DR-DSP. When the dynamic problem degenerates to the static problem, 

DR-DSP leads to an alternative algorithm for solving the static shortest hyper path problem. 

A.  The Static Case: DR-SP 

We first consider the static version of the algorithm (referred to as DR-SP), which captures the basic idea 

of dimension reduction. 

The proposed DR-SP algorithm is based on the following theorem in which we show that for a general 

hyper graph H ,the weight ω(L∗)  of   the shortest path LG ∗  of H  is equal to the shortest path L∗of a 

weighted graph G  derived from H . Specifically, corresponding to every hyper edge e in H , G  contains a 

clique defined on the vertices of e. 
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Theorem 4.1 : Let H = (V, E, w) be a hyper graph, and G = (V, E˜ ) the underlying graph of H  where an 

edge e˜ ∈ E˜  if and only if ∃e ∈ E  such that e˜ ⊂ e. For each edge e˜ in G, its 

weight wG (e˜) is defined as wG (e˜) =  min w(e) 

                                                                  {e∈E: e⊇e˜} 

 Let *L and *

G
L  be the shortest paths from u ∈ V  to v ∈ V  in H  and G, respectively. H and G, 

respectively. Then we have that  w(L∗) = wG (L∗ ).  

Proof : First, for each shortest path GL
*

 in G. we can obtain a corresponding hyperpath L in H with the 

same weight based on [2], therefore we have that 

wG (LG) = w(L) ≥ w(L ). 

Then it suffices to show that there exists a path LG  in G such that wG(LG)  ≤ w(L∗),  which implies that 

wG (L∗ ) ≤ wG (LG ) ≤ w(L∗). 

Assume that L∗ = {e0, e1 , . . . , ek−1 } is a shortest hyper-edge path from v0  to vk  in H  where v0  ∈ e0  and 

vk  ∈ ek−1. Let vi  ∈ ei−1  ∩ ei (i = 1, 2, ..., k − 1) be one of the vertices in the intersection of hyper edges 

ei−1 and ei.  Construct a path LG    = {v0 , v1, ..., vk} in the graph G.  For each edge ei  = {vi, vi+1 } (i = 0, 1, 

..., k − 1), since ei  ⊆ ei, it follows from (2) that 

wG(ei) ≤ w(ei). 

Thus, 
1

*

0

( ) ( ) ( ) ( ).
K

G G G i i

I

w L w e w e w L
−

=

= ≤ =∑ %  

 

B.  The Dynamic Case: DR-DSP 

 In the dynamic case, a sequence C  = {δ1, δ2 , . . . , δl} of hyper edge changes in the hyper graph H 

results in a sequence  of edge changes in the underlying graph G. For each hyper-edge change δi, DR-DSP 

first updates the underlying graph G to locate all the changed edges caused by δi. In the next step, DR-

DSP updates the shortest path tree in the underlying graph G. 

 Consider first the graph update. A change to a hyper edge e only affects those edges in G  that are 

subsets of e, i.e., a hyper edge change is localized in the underlying graph G. Furthermore, since the 

weight of an edge in G is the minimum weight of all hyper edges containing it, not all edges in G that are 

subsets of e will change weight. Based on these observations, we propose a special data structure and 

procedure for updating the underlying graph G without regenerating the graph from scratch using Step 1 

of DR-SP. 

At the initialization stage of the algorithm, a priority queue Muv for each  pair  of  vertices (u, v)  in  the  

hypergraph is established to store the weights of all hyper edges that contain both u and v. When a change 

occurs to hyperedge e, all the priority queues Muv associated with the pair of vertices (u, v) that are 

contained in e are updated with the new weight of e. Thus, the top of these priority queues always 

maintain the weight for edge (u, v) in the underlying graph G for each 

Let L∗   and L∗ 

1 for each u, v ∈ eˇ 
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2  Update(Muv , < eˇ, wnew >); 

3  wuv ←Peek(Muv ); 

4   end; 

 After the underlying graph G is updated, we are now facing a dynamic shortest path problem in a 

graph. However, since a single hyper edge change can result in multiple edge changes in G, we need to  

handle a  batch problem. While existing batch algorithms and iterative single-change algorithms for 

graphs can be directly applied here, we show that the batch 

Property 1: The edge changes in G caused by a hyper edge change are either all weight decreases or all 

weight increases.  

Property 2: All changed edges in G caused by a hyper edge change belong to a clique in G. 

C  Hyper edge Weight Decrease 

Theorem 4.1 and Property 1, there are (possibly) several edge- weight decreases in the underlying graph 

G. Therefore similar to HE-DSP, there is at least one unaffected node x  = argminv∈eˇ{D[v]}.  By  

Property 2,  these  affected edges are 

contained in a clique derived from the changed hyper edge; therefore it is sufficient to determine the 

distance of every node v (other than x)  in the original changed hyper edge e by checking D[x] + wnew < 

D[v]. And we can initialize the priority queue with those nodes whose weight decreases. After that, the 

procedure is similar to that in the graph case. 

DR-DSP: Weight Decrease(eˇ, wnew ). 

Step0 (Update the hypergraph and G) 

1 w(eˇ) ← wnew 

2 Graph Update(eˇ, wnew ) 

Step1 of HE-DSP: Weight Decrease 

Step2 of Graph: Weight Decrease 

D.  Hyper edge Weight Increase 

If the weight of hyper edge eˇ increases to wnew , by Theorem 3 and Property 1, there are (possibly 

several edge-weight 

DR-DSP: Weight Increase(eˇ, wnew ). 

Step0 (Update the hyper graph and G) 

1 w(eˇ) ← wnew 

2 Graph Update(eˇ, wnew ) 

Step1 of HE-DSP: Weight Increase 

Step2 of Graph: Weight Increase 

        Step3.a of Graph: Weight Increase 

        Step3.b of Graph: Weight Increase. 
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5.  APPLICATIONS 

 Shortest path computations on hyper graphs can be applied to communication as well as social 

networks. An example application in wireless communications, in particular, for multi-hop wireless 

networks, is in opportunistic routing schemes such as ExOR, GeRaF and MORE. In such schemes, any 

receiver of a packet is eligible to forward the packet. Receivers typically execute a protocol amongst 

themselves to decide who should forward it. This naturally leads to a hyper graph model where a node 

and its neighbors form a hyper edge. The cost of each hyper edge can be defined based  on  the  

cardinality  of  the  hyper edge to  capture  the success rate of forwarding  and the associated overhead . A 

shortest hyper path from the source to the destination is thus a better route than merely the traditional 

shortest path. And as the network topology changes, a dynamic algorithm is required to maintain the 

shortest hyper path. 

In social networks, information (results, event reports, opinions, rumors, etc.) propagates through diverse 

communication means including direct links (e.g., gestures, optical, satcom, regular phone call), social 

media (e.g.,  Facebook, Twitter, blogs), mailing lists, and newsgroups. Such a network may be modeled 

as a hypergraph with the weight of a hyper edge reflecting the cost, credibility, and/or delay for 

disseminating information among all vertice of this hyper edge. In particular, the weight of a hyperedge 

can capture the unique effect on the information after it passes through a group of people. For instance, a 

result can be discussed by overlapping blog collaboration networks as it spreads, and often the discussion 

yields a better result than if it only spreads through individuals. The minimum cost information passing in 

social networks can thus be modelled as a shortest hyper path problem. 

Another potential application is that of finding the most important actor in a social network. Under a 

graph model of social networks, the relative importance of a vertex can be measured by its between-ness 

and closeness centrality indices. The former is defined based on the number of shortest paths that pass 

through this vertex, and the latter, the total weight of the shortest paths from this vertex to all the other 

vertices [8]. In a social network exhibiting hyper-relationships, between-ness and closeness centrality, 

based on the shortest hyper paths, would be better indicators of the relative importance of each actor, we 

apply the proposed shortest hyper path algorithms to the Enron email data set. We propose a weight 

function that leads to the successful identification of the CEO of Enron as the most important actor under 

the closeness centrality metric. The distance of each person in the data set to the CEO along the resulting 

shortest hyper paths closely reflects the position of the person within the company. 

 

6.  CONCLUSION 

 We have presented, to our best knowledge, the first study of the fully dynamic shortest path problem 

in a general hyper- graph. We have developed two dynamic algorithms for finding and maintaining the 

shortest hyper paths. These two algorithms complement each other with each one preferred in different 

types of hyper graphs and network dynamics, as illustrated in the time complexity analysis and simulation 

experiments. We have discussed and studied via experiments over a real data set the potential applications 

of the dynamic shortest hyper path problem in social and communication networks. 
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ABSTRACT  

In this paper we have studied of neural networks with geometric modeling as well as information meting out 

capabilities of complex hierarchical networks of plain computing units. Also, we have defined and studied 

artificial neural network and Geometric interpretation of Threshold Logic Unit (TLU) action through systems 

whose formation is only moderately stipulated. Various parameters transform the capabilities of the network.  

Key words: Neural Network, Artificial, Neurons and Geometric Modeling. 

 

1.  INTRODUCTION 

 A neural network is an interconnected assembly of simple giving out elements, units or nodes, whose 

functionality is freely based on the animal neuron. The giving out ability of the network is stored in the 

inter unit connection strengths, or weights, obtained by a process of variation to, or knowledge from, a set 

of preparation patterns. 

These seemingly unrelated branches of mathematics come together in a beautiful way when studying 

neural networks and how they operate on data manifolds. Geometric interpretations of neural networks 

form a minority perspective in machine learning; it is this marginal viewpoint that this study develops, 

showing that there exists a wealthy relationship between neural networks and Riemannian geometry. The 

formulate neural networks at the structural level of a Riemannian manifold. This prescription of finding 

and studying the minimum mathematical structure is common in physics, where for example the 

mathematical structure required understanding Quantum Mechanics is Hilbert spaces and for General 

Relativity it is Riemannian manifolds. 

Research in the field of neural networks has been attracting growing awareness in modern years. While 

burrow [McCulloch and Walter Pitts (1943)] obtainable the initial model of artificial neurons, original and 

extra complicated proposals have been prepared starting every ten years. Mathematical analysis has 

solved a few of the mysteries posed by the latest models but has missing various questions open for 

upcoming investigations. Unnecessary to say, the study of neurons, their interconnections, and their role 

as the brain’s elementary structure blocks is one of the most dynamic and important research fields in 
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modern biology. Neural networks are frequently intended for statistical analysis and data modelling, in 

which their role is professed as a different to normal nonlinear regression or cluster analysis techniques 

(Cheng & Titterington (1994)]. Haykin (1994) gives a wide-ranging survey of various neural network 

techniques from an engineering viewpoint. Physicists and Mathematicians are tired to study of networks 

starting a concern in nonlinear dynamical systems, statistical mechanics and automata theory. It is the 

occupation of applied Mathematicians to determine and celebrate the properties of new systems using 

tools formerly working in new areas of science.. The complete Mathematical equipment for exploring 

these relations is developed [Amit (1989)]. 

To tissue this out a small, we first take a speedy seem at a few basic neurobiology. The human brain 

consists of an expected 1011 (100 billion) nerve cells or neurons. Neurons correspond via electrical 

signals that are small-lived impulses or "spikes" in the power of the cell wall or crust. The inter neuron 

relations are mediated by electro-chemical junctions called synapses, which are placed on branches of the 

cell referred to as dendrites. Each neuron naturally receives a lot of thousands of relations from other 

neurons and is therefore always getting a large number of incoming signals, which finally reach the cell 

body. Here, they are integrated or summed together in some way and, generally talking, if the resulting 

signal exceeds some doorstep then the neuron will "flames" or produce a power impulse in reply. This is 

then transmitted to other neurons via a branching fibred known as the axon. 

 

2.   ARTIFICIAL NEURAL NETWORKS 

 The word "Network" will be accustomed to mention several systems of artificial neurons. This may 

vary from impressive as natural as a single node to a large collection of nodes in which each one is 

connected to every other node in the mesh. The nodes are set in a layered structure in which each signal 

emanates from an input and passes via two nodes before reaching an output beyond which it is no longer 

changed. This nosh onward structure is only one of several obtainable and is characteristically used to 

place an input model into one of several module according to the ensuing model of outputs.  

Artificial neural network working on usually referred to like neural network has been aggravated right 

from its initiation by the appreciation that the human brain computers in a wholly special technique from 

the straight digital computer. The brain is a vastly complex, nonlinear, and similar computer (information-

processing system). It has the ability to categorize its structural constituents, known as neurons, thus as to 

achieve positive computations (e.g., parallel recognition, perception, and glide control) various times 

quicker than the top digital computer in subsistence nowadays. [Churchland and Sejnowski, (1992)].  



 

A Study of Neural Networks with Geometric Modeling 

-49- 

Artificial Neural Networks be an effort on modeling the information meting out capabilities of Nervous 

systems. Hence, to begin with, we have to judge the necessary properties of biological Neural Networks 

from the opinion of information meting out. These determinations allow us to design abstract models of 

artificial Neural Networks, which are able to next live simulated and analyzed. Even though the models 

which have been planned to clarify the structure of the brain and the nervous systems of some animals are 

dissimilar in several respects, here is a universal consensus to the soul of the process of neural collections 

is control through communication [Murre, (1995)].  

Now, the neurons are two types Real and Artificial. The real neurons within synaptic strengths may well, 

under definite conditions, be modified in order that the behaviour of each neuron can change or adapt to 

its exacting incentive input. Neurons are not only extremely complex but also vary significantly in the 

information of their structure and function. Thompson (1993) provides a good introductory text, while 

more comprehensive accounts are given by Kandel et al. (1991) and Kuffler et al. (1984). The artificial 

neurons corresponding of this is the amendment of the weight values. The conditions of information 

processing present are no computer programs at this time "knowledge" the network have is believed to be 

stored in its weights, which progress by a method of revision to motivation from a set of pattern models. 

The building blocks of artificial neural networks are artificial neurons.        

 

3.   GEOMETRIC INTERPRETATION OF THRESHOLD LOGIC UNIT (TLU) ACTION  

 If, we have a node receiving n input signals x1, x2,… , xn, then these may only take on the values "0" or 

"1". We therefore have n weights ��, ��…, wn and form the n products   ����, ����, … … , ����.  This 

will be done by simply adding them together to produce the activation a (corresponding to the axon-

hillock membrane potential) so that: 

             	 = ���� + ���� + ⋯ … … … +  ����                                                                      (3.1) 

This type of artificial neuron is known as a threshold logic unit (TLU) and was initially proposed by 

[McCulloch & Pitts (1943)]. 

            Next to, writing the index symbolically (rather than numerically), we can refer to quantities 

commonly so that �
 , and denotes the basic or i
th

 input where it is implicit that i can be any integer 

between 1 and n. Similar explanation concern to the weights  �
. Use these ideas it is likely to represent 

(3.1) in a added compressed form: 

               	 =  ∑ �
�
�
��                                                                                                             (3.2) 

Where Σ (upper case Greek sigma) denotes summation. The expressions above and below Σ denote the 

upper and lower limits of the summation and tell us that the index i runs from 1 to n. Sometimes the limits 



 

AJMI 13(1), Jan.-June, 2021  U.S. Negi and Manoj Singh Bisht 

-50- 

 

are misplaced, because they have been defined elsewhere and we simply indicate the summation index (in 

this case i) by writing it below the Σ. The threshold relation for obtaining the output y may be written: 

              � = �1 ��    	 ≥ �
0 ��  	 < � �                                                                                                       (3.3) 

         In summing up, a TLU separates its input patterns into two categories according to its binary 

response ("0" or "1") to each pattern. These categories may be thought of as regions in a multidimensional 

space that are separated by the higher dimensional equivalent of a straight line or plane. These thoughts 

are now introduced little by little and in a technique that should help put to interval any concerns about 

higher dimensionality and multidimensional spaces. 

 

4.   NEURAL NETWORK MODELS 

 This paper aims to succinctly provide the necessary background for understanding the standard 

formulation of neural networks in machine learning in the setting of graphical models, digital signal 

processing and density estimation. This is by no means a complete review of neural networks, rather a 

short introduction to provide the reader with a working knowledge of neural networks. The two traditional 

paradigms of machine learning, supervised and unsupervised modeling will be reviewed here.  

 Supervised Models: 

The objective of this part is to provide an essential working knowledge of neural networks for supervised 

learning. The objective of the supervised model is to learn parameters � for a fixed model structure  ℎ� : 

X ⟶ Y such that the output is usually interpreted as: 

  P (Y | X = x): = ℎ� (x).  

The parameters of the model are the learned weights and biases from all the layers. 

  �: = {(!("), b(%))} "�'(    

Where (!("), b(%)) 
 are the parameters for the softmax classification layer. 

            The probabilistic output usually comes from the linear softmax classifier:  

    Softmax ()(()) =  *+(,)

∑ *+-
(,).-/0

                                                                                                  (4.1) 

Where )(() = !((). �(() 	12 �(()  is the final layer input for the softmax classifier. 

 Standard and Convolution feed forward Neural Networks: 

            A standard feed forward neural network is a multilayer perceptron [Hornik, Stinchcombe, and 

White (1989), Kurkova, (1992)] and is densely connected:  

      �("3�) = f (!(")  ∙   �(")  +   5(")).                                                                                       (4.2) 
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At this point, the · and + operations are just the standard matrix multiplication and vector addition 

operations of finite dimensional linear algebra, and f is some non-linear function applied element wise 

such as ReLu, tanh or 6 . The universal approximator theorems [Hornik, Stinchcombe, and White (1989), 

Kurkova, (1992)] are for a squashing non-linearity.  

The standard feed forward network is densely connected because there are no a priori restrictions on the 

network connections  !(") . Convolution neural networks [LeCun, Bengio, et al. (1995) Krizhevsky, 

Sutskever, and Hinton (2012)] impose a substantial restriction on network connections:  

      �("3�) = f (!(")  ∗   �(") +  5(")).                                                                                          (4.3) 

Where the   ′ ∗ ′   is the standard convolution operation from digital signal processing; for example in 2-

dimension:  

       ( !(")  ∗ �("))
,8 =  ∑ ∑ !
,8 ,
(")9
 ,�:9

;
8 ,�:; ∗  �
:
,8:8,

(")
                                                            (4.4) 

For an image �(") of size  <" × 1"  with cl-channels, the dimension of the entire image is <" × 1" × >". If 
the convolution weight matrix has cl+1 filters/feature detectors, all of size  ?" × @" , then the matrix !(") 
has total dimensions  ?" × @" × >" × >"3� . For a standard feed forward network, the residual network 

takes the following form. 

         �("3�) = �(") + � (!("). �(") +  5("))                                                                              (4.5) 

 

5. CONCLUSION 

The role of real neurons is exceedingly complex. The necessary information meting out attributes possibly 

will be considerable. A neuron receives input signals from numerous new neurons. Each such signal is 

transformed (by the synaptic mechanism) from the electrical energy point of an exploit potential into a 

constantly variable (graded) postsynaptic potential (PSP). Artificial neural networks possibly will be 

deliberation of as basic models of the networks of neurons that transpire physically in the animal brain. 

The biological point of view the necessary requirement for a neural network is that it should effort to 

confine what we judge is the necessary information meting out characteristics of the related real network.  
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ABSTRACT  

In the present paper, we have investigated fluid flow under boundary layer with a flat plate through porous 

medium. The stream function, velocity components (u, v), velocity potential have also been derived. 

Keywords: Boundary layer flow, complex potential, porous medium, velocity potential 

 

INTRODUCTION 

    In the present research paper we have investigated, motion of boundary layer fluid flow over a flat 

plate through porous medium. Attempts have been made by several researchers in this direction. 

Walton[28], investigated the non liner instability of the thread annular flow at high Reynolds number 

Kader[18], investigated temperature and concentration profiles in fully turbulent boundary layer. 

Pozrikidis[25], explored a singularity method for unsteady linearized flow. Lynch and Holboke[23], 

developed normal flow boundary conditions in 3-D carnation models. Crank[13],  investigated free and 

moving boundary problems. Merkim and. Chaudhary[24],  investigated Face convection boundary layer 

on vertical surface driven by an exothermic surface reaction.  Barichello and Siewart[5],  investigated a 

discrete ordinates solution for poisecuille flow in a plane channel. Chatterjee[11], 
 
investigated evolution 

of the boundary layer over the southern ocean.  Shola and  Proudman[27],  applied a numerical approach 

for  free boundary fluid flow in a trough.  In this study, we have investigated the stream function, velocity 

components (u,v), velocity potential, Complex potential of boundary layer fluid flow a flat plate through 

porous medium. 

 

NOMENCLATURE 

u= Velocity along the X-axis 

v=velocity along the Y-axis 

�∞ =Undisturbed velocity 

η=Dimension less distance parameter 

= Velocity potential 

ψ=Stream function 

W= Complex potential 

�=Kinematic velocity 
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FORMULATION OF THE PROBLEM 

   Consider a thin infinite plate submerged in steady incompressible plane parallel flow, whose 

undisturbed velocity is �∞. The fluid has low viscosity, and the plate is such a way that its plane coincides 

with the direction of  �∞ . Since the plate is of infinite length, the flow may be regarded as two 

dimensional, the x-axis lying along the plate parallel to d�∞ and y-axis normal to the plane, since �∞is 

constant then d�∞/dx=0. 

Governing boundary layer equations are 

 � ��
�� + � ��

�	 = � ��
��  

  
��
�� +

��
�	 =0 

And boundary conditions 

 u=0=v at    y=0  

 u=�∞   at    y ∞ 

And 

 u=
��
�	 , v=-

��
��  

We take a new dimension less distance parameter 

 
 = ���∞
��              (5) 

SOLUTION OF THE PROBLEM: 

Using (4) into (1), we get 

 
��
�	

��
���	 − ��

��
��
�	 =  � ��

���	            (6) 

And by (3)  and (4), we get 

On y=0    
��
�� = 0 = 

��
�	           (7) 

On y→∞   
��
��=�∞           (8) 

Let   G (h) =
�

�∞           (9) 

From (4), we have 

  Ψ= ∫udy 

   = ∫�∞g (h)dy 

          = ∫�∞g (h)���
�∞ �ℎ 

Because 

          
 = ���∞
��  

                  � = 
���
�∞   
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                 �� = ���
�∞ �ℎ  

                    � = ��ℎ�√���∞    �ℎ  

         � = √���∞ � ��ℎ��ℎ  

        � = √�∞�� ��ℎ�                                                         (10) 

            � ��ℎ��ℎ = ��ℎ�  

            
��
�� = ���∞

�  �− �
� � !

" #   
  

��
�� − �

�� ���∞
��  

         
��
�� = − �

�� 
  

                
��
�	 = ��∞

��  

Where 

                
��
�	=√xυ�∞ �

�	g(h) 

  
��
�	=√xυ�∞�′(h)

��
�	 

        
��
�	=√xυ�∞g(h)��∞

�$ 

 
��
�	=�∞�′(h)          (11) 

 
��
��=√��[�′(h)

��
�� �%

"+
�
� � %

" ��ℎ�] 

 
��
��=√υ�∞ [�%

"�′(
)(-
�

�� 
)+
�
� � %

" ��ℎ�] 

  
��
�� = √��∞[− �

�√� 
�′�
� + �
�√� ��
�]  

 
��
�� = �

� �$(∞
� [-h�′())+g(
)          (12) 

 
�"�

���	=
�
� �$�∞

� [�′( 
)
��
�	- �′�
� �*

�	- 
�′′( 
)
�*
�	] 

 
�"�

���	=
�
� �$�∞

� [-
�′′( 
)
�*
�	] 

  
�
� �$�∞

� [-
�′′( 
)��∞
�+] 

  
�",

���	=-
�∞*-′′�*�

��              (13) 

 
�"�
�	"=�∞�′′(
)

�*
�	 

 
�"�
�	"=u∞��∞

�+ �′′( 
)               (14) 

 
�!�

��"�	=
/�∞

� [−�/� 
 �′′( 
)+ �
�

�*
�� �′′�
�]+

*
� �′′′( 
)

��
�� 

   
�!�

� ��	=-
�∞
� [/�

� �′′�
� + �
� 0− �

�� 
1 �′′�
� + *
� �′′′�
��− �

�� 2�]   

 
�!�

� ��	 = /�∞
� �− 3�

��" �′′�
� − *"
��" �′′′�
�#  
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�!�

��"�	=
3�∞�
4�" �′′�
� + �∞*"

4�" �′′′�
�           (15) 

USING (11),(12),(13),(14)  and (15) into (16),we get   

                  [�∞�′�
�] �− �∞*
�� �′′�
�# − �

� ���∞
� [��
� − ℎ�′�
�] 5�∞��∞

�� �′′�
�6   

= � 73
�∞4��  �′′�
� + �∞
�
4�� �′′′�
�: − �∞�2� �′�
��′′�
� − �∞�2� [��
� − 
�′�
�]�′′�
� 

            = � �3*�∞
4�"  �′′�
� + �∞*"

4�" �′′′�
�# − �∞"
�� �′�
��′′�
� − �∞"

�� ��
��′′�
� +                 �∞" *
�� �′�
��′′�
�  

= � �3*�∞
4�"  �′′�
� + �∞*"

4�" �′′′�
�# − �∞"
�� �′�
��′′�
� = � �3*�∞

4�"  �′′�
� + �∞*"
4�" �′′′�
�# − 2<∞�=��
��′′�
� =

3�∞
��′′�
� + �∞
��′′�
� + �∞
���′′′�
� − 2�∞��′′ = 3
��′′ + 
���′′′  
 3 
��′′ + 
���′′′ + 2�∞���′′ = 0                 (16) 

For solving neglecting the third term of equation (16)  

We get   

                                          �[3
�′′�
� + 
��′′′�
�] = 0  

                                            
��′′′�
� + 3
�′′�
� = 0  

                                           
3�′′′�
� + 3
��′′�
� = 0            (17) 

Which is homogeneous linear diff.eq. So put 
 = >? then  

                                           [@�@ − 1��@ − 2� + 3@�@ − 1�]��
� = 0    

                                            [@�@� − 3� + 2� + 3@� − 3�]��
� = 0     

                                             �@3 − @���
�                              

a.e  

 B3 − B = 0                B = 0,1, −1  

 D. ) = D� + D�
 + F!
*                                                                                     

 G. H = 0  

there fore  

  ��
� = D. ) + G. H   
 ��
� = D� + D�
 + F!

*                 (18) 

 where D�, D�, D3  are constant whose value can be determine with help of initial and boundary 

conditions .Then by equation (10) we get………….. 

 I = √�∞�� �D� + D�
 + F!
* #             (19) 

there fore  

                                                 � = �,
�	 = √�∞�� �D� �*

�	 − F!
*"

�*
�	#  

                                                       = �,
�	 = √�∞�� 5D� �*

�	 − F!
*" ��∞

��6  
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                                                         = √�∞����∞
��  �D� − F!

*"#  
                                                     � = �∞ �D� − F!

*"#                                                 (20) 

And  

                                                      J = − *�,
��   

                                                         =−√��∞ ��
�  x�c1 + C�η + F!

* � + √� �C� �*
��  – F!

*"
�*
���# 

                                     =−√��∞ � �
�√�  �C� + C�η + F!

* � + √� �C� 0/*
��1 − F!

* 0/*
��1�# 

                                      = √−��∞ � �
�√� �C� + C�η + F!

* − √�
�  ηO �C� − F!

*"�# 
                                      =√−��∞ � �

�√� �C� + C�η + F!
* � − �

�√� �C�η− F!
* �# 

 =√−��∞ � �
�√� �C� + C�η + F!

* − C�η+ F!
* �# 

 V=− �
� ��∞$

� �C� + �
* C3#         (21) 

We have  

 
�P
�� = − �,

�	  

  
�∅
��= −√�∞�� �C� �*

�	 − F!
*"

�*
�	# 

 =−√�∞�� 5C���∞
�+ − F!

*"  ��∞
�+6 

 =−√�∞�R��∞
�+ �C� − F!

*"# 
  

�∅
��=−�∞ �C� − F!

*"#  
 ∅=−�∞ �C�x − C3� �

*" ��# 

  ∅=−�∞ �C�x − C3� +�
	"�∞ �� #   

 ∅=−�∞ �C�x − F!+
	"�∞� x dx#  

  ∅=−�∞ �C�x − F!+�"
��∞	"#          (22) 

The complex potential w=∅+iΨ 

w=-−�∞ �C�x − F!$�"
��∞	"]  + i√�∞�� [C� + C�η + F!

* #           (23) 

U = −< �D�� − F!�
��  V"

W"#          (24) 

 

CONCLUSION AND DISCUSSION  

 In the present study we have made an attempt to investigate, the stream function, velocity components 

(u,v) ,velocity potential ,and complex potential of boundary layer fluid flow over a flat plate through 

porous medium.  

 We have investigated stream function given by equation no. (19) and calculated the velocity 

component by equation no. (20, 21). We tried to find out the velocity potential in given by equation             
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no. (22) and we have investigated the complex potential is given by equation no. (23), fluid flow under 

boundary layer with a flat plate through porous medium.  
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ABSTRACT  

In the present review Tsallis holographic dark energy models in existing theories of gravity were discussed. The 

evolution of different cosmological parameters like Equation of State, Deceleration parameter, Energy density is 

observed. The Statefinder diagnostic pair (r,s), wD - �,
D analysis is also discussed. The necessary remedies are 

suggested to the existing results to get more better results. 

Keywords: Tsallis, Gravity, Dark energy, Diagnostic 

 

1. INTRODUCTION 

 The surprising result that our universe is accelerating, available in cosmology nowadays. It is believed 

that approximate ninety five percent of our universe consists of two remarkable components known as 

Dark Matter (DM) and Dark Energy(DE )[33, 35, 34, 40, 19] and remaining percentage include radiation 

and baryonic matter. The DM which is about 25% the universe is pressureless dark matter which 

contribute to the velocity of galaxy clusters[1]. The DE which is about 70% of the universe is a keystone 

of present accelerating expansion of the universe. The dark sector of the cosmos arouses interest of 

physcist and cosmologist to know about the factor responsible for current accelerating expansion of the 

universe. The most famous General Theory of Relativity (GTR) lacks in explaining the current 

accelerating expansion of the universe[20, 21]. The GTR shows incompatibility with other well 

established theories of gravity and lacks of uniqueness. This problem can be eliminated by introducing 

modification in General Theory of Relativity or by source of DE having negative pressure. It is well 

established fact in cosmology that the early universe experienced an accelerated phase followed by 

radiation and matter dominated epoch before current accelerated expansion of the universe. A large 

number of models are available in literature to explain the present accelerated expansion of the 

universe[29, 36, 41]. The ɅCDM known as Ʌ-Cold Dark Matter model containing the cosmological 

constant was the main candidate to explain DE phenomenon but it suffers from two serious problems 

namely fine tuning and cosmic coincidence problem. The cosmological coincidence problem was 

observed first time by Steinhardt [7] and Zlatev et al.[9]. The fine tuning problem of the ɅCDM model is 

related to difference between observed value and theoretical value. The observations predict a very tiny 

value in comparison to the theoretical value of it which is about to 120 orders higher. Fine-tuning and 

coincidence problems associated with the cosmological constant have led to the search for dynamical DE 

models [30]. A variety of models with a family of scalar field like phantom[15, 22, 23], quintessence[3, 4, 

8, 10], K-essence[12] , quintom [28, 37], Chaplygin gas model, generalized Chaplygin gas model and 
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modified Chaplygin gas model[13, 16, 24, 25, 31, 42, 44, 45, 47,48 49, 50, 51, 52, 53,69] have been 

discussed. These models includes various cosmological parameter to discuss the dynamics of the 

universe. The Equation of State  parameter(EOS) defines about accelerated and decelerated expansion of 

the universe. It is defined as the ratio of pressure pD to energy density ρD and looks like  wD = pD /ρD. The 

value of wD is classified as follows for w = 1, it represent stiff fluid, w =1/3 shows radiation dominated 

phase whereas w=0 shows matter dominated phase, -1 < w < -1/3 shows DE dominanted accerlerated 

phase with quintessence and w = -1 shows the cosmological constant where w <-1 present phantom era. 

The deceleration parameter (DP ) denoted by q= -1 -  �� ��⁄  is used to determine the accelerated or 

decelerated expansion of the universe. 

The GTR shows good result at solar system scale but lacks at cosmic scale to find out origin of 

mysterious component of DE which has negative pressure. The first modification to Eienstein theory of 

gravity was Kaluza -Klein gravity[38] in which gravity was unified with electromagnetic force. Brans-

Dicke(BD) theory, which was proposed by Brans and Dicke[2] in 1961 is a natural extension of Eienstein 

General Theory of Relativity. In this theory the dynamics of gravity were represented by a scalar field and 

dynamics of spacetime were represented by the metric tensor. This theory is most successful theory 

nowadays because of its association with string theory and extra dimensional theory. It is solely based on 

dimensionless argument and with the matter Lagrangian being minimally coupled. In BD theory, 

Newton’s gravitational constant G is not presumed to be constant but is proportional to the inverse of the 

scalar field φ  , which can vary from place to place and with time. 

 

2. TSALLIS HOLOGRAPHIC DARK ENERGY MODEL 

 An interesting phenomenon to explain origin and nature of DE is application of holographic 

principle[5, 6, 17] at cosmological framework. The relation between the Ultra violet cut off the quantum 

field theory and vacuum energy with largest distances of the theory leads to the form of DE known as 

Holographic Dark Energy[11,26]. According to holographic principle, the number of degrees of freedom 

in a bounded system should be finite and has relations with the area of its boundary. For a system with 

size L and ultra-voilet (UV) cut off without decaying in to a black hole , it is required that total energy in 

region of size L should not exceed the mass of a black hole. Various HDE models [56, 43, 32] have been 

studied to observe the dynamic of universe. The area entropy relation is the key ingredient of this 

hypothesis assuming that black hole relates short distances cut off  to the long distances cut off, results to 

an upper bound for the zero point energy density. The Holographic Dark Energy(HDE) faces some 

problems and unable to explain the timeline of  a flat FRW universe. In extension to HDE models, new 

model of DE has been proposed using Tsallis entropy and holographic principle known as Tsallis 

holographic dark energy(THDE)[57, 58]. Many DE models on THDE are available in literature to search 

for the behavior of present universe[59, 64, 65, 72, 73, 66, 67, 55]. It is observed that using Tsallis statics 

to the system horizon[39, 18, 14]  the  Bekenstein  entropy is obtained and approaches to stability of the 

model[60]. The energy density of HDE can be given by ρD = 3c
2
Mp

2
 where c

2
is a numerical constant, and 

Mp
2
 is reduced Planck  mass and L denotes the size of current universe[27, 26]. The standard HDE 

depends on the entropy area relation S ~A ~L
2
 of black hole with A = 4 πL

2
 denotes the area of horizon. 
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The horizon entropy of a black hole can be modified as sδ
= γ ��[46] where γ is unknown constant and δ 

is non additivity parameter. A relation between the system entropy S and UV cut off was proposed by 

[11] as 	
 
 ≤ 




� �  which after combining with the relation 
� = γ��  gives the relation as Ʌ
4

≤

(γ(4�)�)	����,  where δ denotes the vacuum energy density . The energy density of THDE model is 

given by as  ρD = B	����  where B is unknown parameter.  

 

3. EVOLUTION OF TSALLIS HOLOGRAPHIC DARK ENERGY 

 Tsallis Holographic dark energy model was proposed [57] in standard cosmology by considering a 

flat Friedman-Robertson-Walker(FRW) universe without interaction between the dark sector of the 

universe. It is observed that the late time acceleration of the universe with Hubble radius is achieved. It 

is also observed that for the model parameter δ > 1, the model is not stable during the cosmic evolution. 

 Following [57], Tsallis Holographic Dark Energy in the Brans-Dicke Cosmology was studied by[61]. 

The model has been discussed for non interacting and interacting case of cosmos sector in flat and non flat 

universe.  For model parameter δ = 2, the EOS parameter mimics cosmological constant in future for flat 

noninteracting THDE. The unstability of the model is achieved. If the interaction is added, then acceptable 

and proper behavior of of DP, Ω D and EOS are not achieved , means it can meet the classical stability 

requirement. For non at FRW universe, the model provides the suitable description of cosmic evolution in 

both interacting and non interacting case .It is also observed that these description are not stable. 

 Another model of Tsallis holographic dark energy namely "A note on Tsallis holographic dark 

energy"[58] is studied in standard cosmology by using various infrared cut off  including Ricci horizon, 

Particle horizon and Granda-Oliver(GO) cut off. It is obtained that for the Particle horizon as the IR 

cutoff, the late time accelerated expansion of the universe is achieved whereas the usual HDE models 

lacks in receiving late time acceleration .The current cosmic acceleration is achieved for interactions 

between the dark sector of the universe for all IR cut off . 

Holographic dark energy through Tsallis entropy was studied in standard cosmology [62] with future 

event horizon as the IR cut off . The usual thermal history is seen means the successive order of matter 

and dark energy epochs observed, before resulting in dark energy dominant era. 

Effects of anisotropy on sign changeable interacting Tsallis holographic dark energy [63] is investigated. 

The spatially homogenous Bianchi type I universe is considered with Hubble horizon, Particle 

horizon,GO horizon,Ricci horizon and Event horizon as IR cut off . The classical stability analysis shows 

that the model is unstable at the limit (z → - 1) . It is also mentioned that the stability may be achieved for 

the current universe(z → 0) depending on the value of model parameters like δ. 

Another model of THDE  named "observational constraints on interacting Tsallis holographic dark energy 

"is studied[69] with Hubble horizon and future horizon as IR cut off. The phenomenological non 

gravitational interaction between the dark sectors of the universe is considered with interaction term                  

Q = 3bH ρm. The model is analyzed using various cosmological tests. The Pantheon Supernovae type Ia, 

Baryon acoustic oscillation, Cosmic Microwave Background, the local value of H0 and Gamma ray burst 

data is taken for constraining the free parameters of the model as observational data. It is observed that the 

Hubble parameter and energy density of THDE and interacting THDE fits good with the observation. 
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Both  interacting and non interacting THDE experience accelerating universe. The model is investigated 

for objective information criterion using Akaike and Bayesian Information Criterion. It is found that both 

interacting and non interacting THDE does not supported by observational data. The model shows 

instability for both interacting and non interacting THDE with Hubble horizon against the background 

whereas with future event horizon stability against the background in late time is observed. 

Tsallis holographic dark energy in Fractal Universe[68] with Hubble Horizon as IR cut off in flat fractal 

universe is investigated for interacting and non interacting case with interaction term Q = 3b
2
hρD. The 

observational data from SNIa, Panthon data, Cosmic Microwave Background of Planck 2015, BOSS 

DR12, the extended Baryon Acoustic Oscillation Spectro-scopic Survey, 6df Survey , Gamma Ray Burst 

Data is taken for free parameters. To obtain the desired result Cosmo Hammer Paython package is 

applied. The DP shows accelerating expansion and remains in accelerating phase for redshift  0.6 < zt < 

0.8 ,which fits good with the observation for which 0.5 < zt < 1. In limiting case  �→0 , the standard 

cosmology is recovered for DP of THDE. The evolution of density parameter �� versus redshift z shows 

that when (z→ ∞), (�� → 0) for early universe whereas when (z→0), ΩD →1. The EOS parameter shows 

accelerated expansion at present time in absence of interaction. Also, it mimics the cosmological constant 

by setting coupling constant to zero. For non zero value of  b
2
 , the model crosses phanton divide line i.e 

wD < - 1 in future. The Statefinder diagnostic pair meets the ɅCDM point  (r, s) = (1,0). The value of 

Hubble constant is obtained as H0 = (68,70) which fits with the observation. The coupling constant is 

obtained as positive and small values which shows decaying DE to DM. It is suggested that in interacting 

case THDE can be investigated. One would like to study the dynamical system methods to point out the 

status of the non-linear interactions in future. The perturbation analysis compare to the gravitational 

lenses and the Large Scale Structure can be studied. 

"Tsallis holographic dark energy in Brans-Dicke theory with logarithmic scalar field" is studied[70] with 

Hubble horizon as IR cut off for both interacting and non interacting case. In non interacting case the 

dimensionless density parameter is observed positive and decreasing function throughout the evolution 

and finally approaches to positive constant value for different values of model parameter δ and the 

steepness increases with increases in δ. The Equation of State parameter(EOS) shows matter dominant era 

, then adopts quintessence DE era and then turns to vacuum DE era. The model enters to an accelerated 

phase at an early time. It is also observed that EOS never crosses the Phantom Divide Line(PDL). The 

Deceleration Parameter versus redshift z is observed with smooth transition from early decelerated era to 

present accelerated phase .The transition redshift zt decreases as δ increases. The transition redshift zt 

from decelerated phase to an accelerated phase is observed in the interval 0.57 < zt < 0.77 . The 

decreasing behavior of squared sound speed with positive sign shows stability of the model leading to 

unstability in late time. The wD- � ,
�  plane analysis shows that expansion of the universe is more 

accelerating in freezing region. The interacting case with interaction term Q = 3c
2
( ρm + ρd)  is also 

explore the possibility of new dynamics of the universe in the model.The density parameter has been 

plotted against redshift z showing decreasing behavior . However increasing the coupling constant c
2
 and 

parameter leads the density parameter increases but effect of coupling constant ends near past and 

steepness is increased . The EOS parameter shows quintessence phase in starting then turns to phantom 
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region by crossing PDL(vacuum dominated era). With increase in value of coupling constant,the EOS 

parameters achieve high phantom region.Increase in the value of c
2
 and δ results in transition of the model 

from quintessence to phantom phase. The DP starts from decelerating phase then adopts accelerating 

phase and then finally gives q = -1. The ��-� ,
� plane is also taken in to account to discuss the dynamics 

of DE models. This analysis gives rise to freezing region only, means the present scenario gives 

consistent result with accelerated expansion of the universe. The model is seen to be stable for a short 

period of time and then shows instability as time increases. 

 Observational constraints on interacting Tsallis holographic dark energy in logarithmic Brans-Dicke 

theory[71] is investigated for both interacting and non interacting case with interaction Q = 3c
2
( ρm + ρd) 

for Hubble horizon as IR cut off. The dimensionless density parameter has been analyzed for non 

interacting and interacting case with the help of Planck’s data which fits the desired requirements at 

present epoch. The EOS parameter also fits with the Plank’s observation data. The graph of deceleration 

parameter for both interacting and non interacting case shows smooth transition from early decelerated era 

to current accelerated era of the universe. The transition red shift zt from decelerated phase to an 

accelerated phase is observed in the interval 0.57 < zt < 0.77  which fits with observation which are given 

from H(z)+SN Ia for ɅCDM model. The model is stable for a short period of time and moves towards in-

stability in later epoch for both interacting and non interacting case. The  ��-� ,
� analysis corresponds to 

freezing region for both interacting and non interacting case. The model also meets the observation of 

Planck’s collaboration which is given by s(--0.89 < wD <-1.38 ) and � ,
�  < 1.32. 

A generalized interacting Tsallis holographic dark energy model and its thermodynamics implications[74] 

was investigated in standard cosmology with Hubble Horizon as IR cutoff with interaction term Q = 

3H(��
�ρm + ��

� ρD) which is assumed to be non gravitational in nature. It is seen that the EOS of THDE is 

affected by Tsallis parameter δ and it can go to phantom regime or in the quintessence regime during the 

evolution before it asymptotically leads to cosmological constant value in future. Decelerating universe at 

an early epoch and accelerating universe at present is observed. It explains both the growth of structure at 

early time and late time acceleration of the universe. It is also observed that the Jerk parameter j is 

positive and approaches to ɅCDM model as z → -1. The thermodynamics nature of the universe is also 

discussed for the model. It is observed that for Bekenstein entropy (δ = 1), Generalized second law of 

thermodynamics is satisfied whereas for ( δ≠ 1), it is violated. 

Study of Tsallis holographic dark energy model in the framework of Fractal cosmology [75] is studied. 

The evolution of fractal universe composed of Tsallis holographic dark energy and a pressure less dark 

matter with interaction term Q = 3b
2
H ρD is observed. The fractal function is chosen in a power-law form 

as, �=��  with �> 0. The evolution of the density parameters Ωm and ΩD against the red shift parameter z 

is attained. It is seen that at high red shift,  Ωm dominates over ΩD, while at the late time, ΩD dominates 

over  Ωm. The energy transfer from THDE to DM is obtained. The flow of energy is very low at present 

whereas very high in early time. Although the energy transfer is from THDE to DM but in this model the 

growth of the universe is observed in such a manner that ΩD dominates over Ωm for the present universe. 

This gives a solution of cosmic coincidence problem. The normalized Hubble parameter h(z) for both 

THDE model and ɅCDM is compared with data points and observed that THDE model gives the 
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observed value at every data point. The DP and total EOS versus redshift ! is analyzed . The model shows 

smooth transition from early deceleration era to present acceleration era. The total EOS �"#"$%  attains 

values between -1 < �"#"$% < - 1/3 < at low redshift and then remains greater than 1and approaches to zero 

at high redshift. It does not suffer from the problem of future singularity. THDE model shows instability 

against perturbation. 

 Cosmological Perturbation in Tsallis Holographic Dark energy Scenarios [76] with three HDE models 

by assuming perturbative level and observational viability is studied. The THDE with Future and Hubble 

Horizon as IR cutoff  and standard HDE with Future event horizon as cutoff is taken into consideration. 

The application of linear perturbation theory is used to study the growth of matter perturbation in 

clustered and non clustered Holographic dark energy. A Bayesian analysis is applied using Baryon 

Acoustic Oscillations, Big Bang Nucleosynthesis, Cosmic Microwave Background, Cosmic Chronometer, 

Pantheon type Ia supernovae and redshift space distortion data to compare the model. By considering the 

HDE and ɅCDM, the relative deviation of matter fluctuation for present time shows minimum difference 

in values that the HDE behaves as cosmological constant. The clustered THDE models are greater to non 

clustered THDE, when impact of different parameter combination on linear growth is associated. The 

EOS parameter of THDE reflect a little difference from the cosmological constant with Hubble Horizon 

as IR cut off for the present time where it crosses the phantom barrier. For THDE with Future event 

horizon, there is no significant difference from standard HDE model. The new HDE and ɅCDM are taken 

parallel using Baysein evidence for all data combinations. It is found that the DE models studied in the 

present work not fit the observation in cluster scale as good as ɅCDM. This problem can be solved by 

taken some other experiments such J-PAS[77], DESI Aghamousa[78] and Euclid[79] 

 

4. CONCLUSION 

      The present work shows Tsallis holographic dark energy models in existing theories of gravity. The 

literature review on Tsallis Holographic Dark Energy Models and the consequences of different 

cosmological parameters like Equation of State, Deceleration parameter, Energy density is observed. The 

Statefinder diagnostic pair (r, s), ��-� ,
� is also discussed. Recent result shows that the universe is in 

accelerating expansion mode described by phantom like behavior. Later results indicate that the entropy 

formalism plays an important role in understanding and explaining the dynamics of our universe. 
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ABSTRACT  

The theory of some H-projective curvature tensor properties inside a Kähler manifold [4]. That was developed 

further [5],[6], and[9]. The aim of this paper is to introduce recurrent manifolds on the H-projective Curvature 

and Ricci, and to research their properties with regard to other similar tensors. The H-projective curvature and 

n-recurrent Ricci tensor were studied.  The paper is organized as follows. In section one; required details are 

given on recurring manifolds Curvature and Ricci. We have studied some of the curvature and Ricci tensor 

properties in section two and their equations are satisfied. In section three, with non-vanishing, we describe 

from n-recurrent to Ricci n-recurrent,, 2 forms and also define that the manifold is from n-symmetric to Ricci  

n-symmetric. In section four, we show that some H-projective curvature tensor theorems are in the form of        

n-recurrent and n-symmetric. 

M.S.C. 2010: 83C15, 83C57, 53B50. 

KEY WORDS: Curvature and Ricci tensor; H-projective Ricci and Curvature tensor; KH-structure; con-

harmonic, con-circular, H-con-harmonic Buchner curvature tensor etc. 

 

1. INTRODUCTION 

 Let us consider a n-dimensional differentiable manifold of differentiability class C
∞ . Let there is 

defined in 2nM , a C∞  vector valued linear function F , such that 

 (1.1)     2F X X=   ; for arbitrary vector field X . 

(1.2)     ( ).
def

X F X=  

Then it is said to be a recurring multiplicity, and it is said to give [8] an almost product structure. Let 2nM  

be endowed with a metric tensor g  satisfying  

(1.3)     ( , ) ( , )`
def

F X Y g X Y=  ( , )g X Y= ( , )F Y X=  

(1.4)       ( , ) ( , )g X Y g X Y=  

Then 2nM  is called almost product Riemannian manifold [8] and F̀  is a (0, 2) type tensor. Then the 

following equations hold 

 (1.6)     ( , ) ( , ) 0` `F X Y F X Y− =  

(1.7)     ( , ) ( , ) 0F̀ X Y F X Y− = . 

If on an Curvature and Ricci recurrent manifold 2nM , F  is covariant constant with respect to the 

Riemannian connection D , i.e., 

(1.8)     ( ) 0 ( )( , )XD F Y VF Y X= = , 
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Then 2nM  is said to be recurrent manifold [2], [4] and [8] and V  being the operator of covariant 

differentiation, is satisfied then nM  is said to be KH-structure. 

 

2.  CURVATURES AND RICCI TENSOR 

 Let K  and Ric  denote the curvature and Ricci recurrent tensor in 2nM  and then the following 

equation are satisfies 

(2.1)     ( , , ) ( , , )K X Y Z K X Y Z= , 

(2.2)    ( , , ) ( , , )K X Y Z K X Y Z= , 

(2.3)    ( , , , ) ( , , , ) ( , , , )` `K X Y Z T K X Y Z T K X Y Z T= = − , 

(2.4)     ( , , , ) ( ( , , ), )`
def

K X Y Z T g K X Y Z T=  

(2.5)   (a)  ( , ) ( ( ), )Ric X Y g r Y Z=  

           (b)   1

1( , ) ( )( , )Ric Y Z C K Y Z= , 

(2.6)   (a)   ( , ) ( , )Ric X Y Ric X Y=  

           (b)    1

1( )C r R= , 

(2.7)    ( , ) ( , )Ric X Y Ric X Y= . 

Then r  is the self adjoins Ric  map 1

1C  is the contraction with respect to first slot. 

The H-projective curvature tensor in 2nM  is given by 

(2.8)     
1

( , , ) ( , , ) [ ( , ) ( , )
2( 1)

P X Y Z K X Y Z Ric Y Z Ric X Z Y
M

= − −
+

 

                                ( , ) ( , ) 2 ( , )Ric Y Z X Ric X Z Y Ric X Y Z− + − , 

(2.9)    ( , , , ) ( ( , , ), )`
Def

P X Y Z T g P X Y Z T= . 

Let W be the projective curvature tensor, let C be the conformal curvature tensor, let L be the con-

harmonic curvature tensor, let V be the con-circular curvature tensor, let S be the H-harmonic curvature 

tensor and let B be the curvature tensor given by Buchner respectively (2.10)     

1
( , , ) ( , , ) [ ( , ) ( , ) ]

(2 1)
W X Y Z K X Y Z Ric Y Z X Ric X Z Y

m
= − −

−
 

(2.11)    
1

( , , ) ( , , ) [ ( , ) ( , ) ( , ) ( )
2( 1)

C X Y Z K X Y Z Ric Y Z X Ric X Z Y g X Z r Y
m

= − − −
−

 

                                   ( , ) ( ) [ ( , ) ( , ) ],
2(2 1)( 1)

R
g Y Z r X g Y Z X g X Z Y

m m
+ + −

− −
 

(2.12)     
1

( , , ) ( , , ) [ ( , ) ( , )
2( 1)

L X Y Z K X Y Z Ric Y Z X Ric X Z Y
m

= − −
−

 

                                   ( , ) ( ) ( , ) ( )]g Y Z r X g X Z r Y+ − , 

(2.13)     ( , , ) ( , , ) [ ( , ) ( , ) ]
2 (2 1)

R
V X Y Z K X Y Z g Y Z X g X Z Y

m m
= − −

−
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(2.14)    
1

( , , ) ( , , ) [ ( , ) ( , )
2( 2)

S X Y Z K X Y Z Ric X Z Y Ric Y Z X
m

= − −
+

 

                                  ( , ) ( , ) 2 ( , ) ( , ) ( )Ric X Z Y Ric Y Z X Ric X Y Z g X Z r Y+ − + +  

                                  ( , ) ( ) ( , ) ( ) ( , ) ( ) 2 ( , ) ( )g Y Z r X g X Z r Y g Y Z r X g X Y r Z− + − + , 

(2.15)      
1

( , , ) ( , , ) [ ( , ) ( , ) ( , ) ( )
2( 2)

B X Y Z K X Y Z Ric X Z Y Ric Y Z X g X Z r Y
m

= + − +
+

 

                             ( , ) ( ) ( , ) ( , ) ( , ) ( ) ( , ) ( )g Y Z r X Ric X Z Y Ric Y Z X g X Z r Y g Y Z r X− + − + −  

                              ( , ) ( ) 2 ( , ) 2 ( , ) ( ) [ ( , )
4( 1)( 2)

R
g Y Z r X Ric X Y Z g X Y r Z g X Z Y

m m
− + + −

+ +
 

                                   ( , ) ( , ) ( , ) 2 ( , ) ].g Y Z X g X Z Y g Y Z X g X Y Z− + − +  

Now, with the aid of (2.8) and (2.9), removing K from the equations (2.10), (2.11), (2.12), (2.13), (2.14) 

and (2.15) we have  

(2.16)    
3

( , , ) ( , , ) [ ( , ) ( , )
2(2 1)( 1)

P X Y Z W X Y Z Ric Y Z X Ric X Z Y
m m

= + −
− +

 

                                  
1

[ ( , ) ( , ) 2 ( , ) ]
2( 1)

Ric Y Z X Ric X Z Y Ric X Y Z
m

− − −
+

, 

(2,17)    2

1
( , , ) ( , , ) [ ( , ) ( , ) ]

( 1)
P X Y Z C X Y Z Ric Y Z X Ric X Z Y

m
= + −

−
 

                                    
1

[ ( , ) ( ) ( , ) ( )]
2( 1)

g Y Z r X g X Z r Y
m

+ −
+

 

                                   [ ( , ) ( , ) ]
2( 1)(2 1)

R
g Y Z X g X Z Y

m m
− −

− −
 

                                   
1

[ ( , ) ( , ) 2 ( , )
2( 1)

Ric Y Z X Ric X Z Y Ric X Y Z
m

− − −
+

, 

(2.18)    2

1
( , , ) ( , , ) [ ( , ) ( , ) ]

( 1)
P X Y Z L X Y Z Ric Y Z X Ric X Z Y

m
= + −

−
 

                                
1

[ ( , ) ( ) ( , ) ( )]
2( 1)

g Y Z r X g X Z r Y
m

+ −
+

 

                                 
1

[ ( , ) ( , ) 2 ( , )
2( 1)

Ric Y Z X Ric X Z Y Ric X Y Z
m

− − −
+

, 

(2.19)    
1

( , , ) ( , , ) [ ( , ) ( , ) ]
2 (2 1) 2( 1)

R
P X Y Z V X Y Z g Y Z X g X Z Y

m m m
= + − −

− +
 

                          [ ( , ) ( , ) ( , ) ( , ) 2 ( , ) ]Ric Y Z X Ric X Z Y Ric Y Z X Ric X Z Y Ric X Y Z− + − − , 

(2.20)      
1 (2 3)

( , , ) ( , , ) [ ( , ) ( , ) ]
2( 1)( 2) 2( 1)( 2)

m
P X Y Z S X Y Z Ric Y Z X Ric X Z Y

m m m m

+
= − − −

+ + + +
 

                                     
1

[ ( , ) ( , ) 2 ( , ) ] [ ( , ) ( )
2( 2)

Ric X Z Y Ric Y Z X Ric X Y Z g X Z r Y
m

− + −
+

 

                                            ( , ) ( ) ( , ) ( ) ( , ) ( ) 2 ( , ) ( )]g Y Z r X g X Z r Y g Y Z r X g X Y r Z− + − +     
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(2.21)    
1 (2 3)

( , , ) ( , , ) [ ( , ) ( , ) ]
2( 1)( 2) 2( 1)( 2)

m
P X Y Z S X Y Z Ric Y Z X Ric X Z Y

m m m m

+
= − − −

+ + + +  

                                 
1

[ ( , ) ( , ) 2 ( , ) ] [ ( , ) ( )
2( 2)

Ric Y Z X Ric X Z Y Ric X Y Z g X Z r Y
m

− − −
+  

                                

( , ) ( ) ( , ) ( ) ( , ) ( ) 2 ( , ) ( )]g Y Z r X g X Z r Y g Y Z r X g X Y r Z− + − +    

                              [ ( , ) ( , ) ( , ) ( , ) 2 ( , ) ]
4( 1)( 2)

R
g X Z Y g Y Z X g X Z Y g Y Z X g X Y Z

m m
+ − + − +

+ +  
 

 

3.  RICCI RECURRENT MANIFOLD 

 If the manifold nM  is said to be recurrent, then 

(3.1)     1 1( )( , , , ) ( ) ( , , )
Def

K X Y Z U A U K X Y Z∇ =  

It is said to be Ricci recurrent, if 

(3.2)    1 1 1( , , ) ( ) ( , )Ric Y Z U A U Ric Y Z∇ = , 

This gives 

(3.3)    1 1 1( )( , ) ( ) ( )r Z U A U r Z∇ = , 

(3.4)     1 1 1( )( ) ( )R U A U R∇ = , 

Where 1A  is a non vanishing, C
∞ , 1-form. If the manifold nM is said to be bi-recurrent [4], then 

(3.5)    1 2 2 1 2( )( , , , , ) ( , ) ( , , )K X Y Z U U A U U K X Y Z∇∇ =  

It is said to be Ricci bi-recurrent, if 

(3.6)     1 2 2 1 2( )( , , , ) ( , ) ( , )Ric Y Z U U A U U Ric Y Z∇∇ = , 

Where 2A  is a non vanishing, C
∞  2 form such that 

(3.7)    2 1 2 1 1 2 1 1 2 2( , ) ( )( , ) ( ) ( )A U U A U U A U A U= ∇ + , 

The manifold nM  is said to be n-recurrent, if 

(3.8)   1 2 1 2( ....... )( , , , , ........ ) ( , ,...... ) ( , , )n n nK X Y Z U U U A U U U K X Y Z∇ ∇∇ = , 

It is said to be Ricci n-recurrent, if 

(3.9)    1 2 1 2( ....... )( , , , ........ ) ( , ,...... ) ( , )n n nRic Y Z U U U A U U U Ric Y Z∇ ∇∇ =  

This gives 

(3.10)    1 2 1 2( ....... )( , , ........ ) ( , ,...... ) ( )n n nr Z U U U A U U U r Z∇ ∇∇ =  , 

(3.11)    1 2 1 2( ....... )( , ........ ) ( , ,...... )n n nR U U U A U U U R∇ ∇∇ = , 

Where nA  is non-vanishing C
∞ , n form, such that 

(3.12)   1 2 1 1 2 1 1 2 1 1( , ,......, ) ( )( , ,......, ) ( , ,......, )n n n n n n nA U U U A U U U A U U U AU
− − −

= ∇ +  
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Equations (3.8), (3.9), (3.10), (3.11) and (3.12) show if the manifold is n-recurrent then n-recurrent is 

Ricci. Let Q, a vector valued, tri-linear function be any one of the curvature tensors W, C, L, V, S or B 

then 2nM  is said to be Q n-recurrent, if 

(3.13)    1 2 1 2( ....... )( , , , , ........ ) ( , ,...... ) ( , , )n n nQ X Y Z U U U A U U U Q X Y Z∇ ∇∇ = , 

The manifold 2nM  is said to be n-symmetric, if 

(3.14)     1 2( ....... )( , , , , ........, ) 0nK X Y Z U U U∇ ∇∇ = , 

This gives 

(3.15)      1 2( ....... )( , , , ........, ) 0nRic Y Z U U U∇ ∇∇ = , 

Or 

(3.16)    1 2( ....... )( , , ........, ) 0nr Z U U U∇ ∇∇ = , 

Or 

(3.17)     1 2( ....... )( , ........, ) 0nR U U U∇ ∇∇ = , 

Equations (3.15), (3.16) and (3.17) define that the manifold is Ricci n-symmetric. The manifold 2nM  is 

said to be Q n-symmetric, if 

(3.18)    1 2( ....... )( , , , , ........, ) 0nQ X Y Z U U U∇ ∇∇ = . 

 

4.  H-PROJECTIVE CURVATURE TENSOR 

 If the manifold 2nM  is said to be H-Projective n-recurrent, if   

(4.1)    1 2 1 2( ....... )( , , , , ........ ) ( , ,...... ) ( , , )n n nP X Y Z U U U A U U U P X Y Z∇ ∇∇ =  

The manifold 2nM  is said to be H-Projective n-symmetric, if 

(4.2)    1 2( ....... )( , , , , ,........, ) 0nP X Y Z U U U∇ ∇∇ =
   

 

Theorem 4.1. If the manifold 2nM  be n-recurrent then it is H-projective n-recurrent for the same 

proportionally form nA . 

Proof. Differentiating covariant equation (2.8) with respect to  1 2, ,........, nU U U  successively, we get 

(4.3)    1 2 1 2( ....... )( , , , , ,........, ) ( ....... )( , , , , ,........, )n nP X Y Z U U U K X Y Z U U U∇ ∇∇ = ∇ ∇∇
 

               1 2 1 2

1
[( ....... )( , , , ,........, ) ( ....... )( , , , ,........, )

2( 1)
n nRic Y Z U U U X Ric X Z U U U Y

m
− ∇ ∇∇ − ∇ ∇∇

+  

                 1 2 1 2( ......... )( , , , ,........, ) ( ........ )( , , , ,........, )n nRic Y Z U U U X Ric X Z U U U Y− ∇ ∇∇ + ∇ ∇∇   

                 1 22( ....... )( , , , ,........, ) ]nRic X Y U U U Z− ∇ ∇∇
 

Since the theorem is n-recurring, using the equations (3.8), (3.9), (3.10), (3.11), (3.12) and (2.8) in (4.3), 

we get the theorem (4.1) hence. 
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Theorem 4.2. If the manifold 2nM  be n-recurrent then it is H-projective n-recurrent and Ricci n-recurrent 

then it is n-recurrent for the same proportionality from nA . 

Proof. Multiplying equation (2.8) by 1 2( , ,...... )n nA U U U through, subtracting the resulting equation from 

(4.3) and then using (4.1) and (3.9), we get (3.8). Hence the statement.  

Theorem 4.3. In the manifold 2nM  if any two of the following conditions hold then the third also hold 

for the same proportionality form nA . 

(i) It is H-projective n-recurrent; 

(ii) It is projective n-recurrent; 

(iii) It is Ricci n-recurrent. 

Proof. Differentiating covariant equation (2.16) with respect to 1 2, ,...... nU U U  successively, we get
   

 

(4.4)    1 2 1 2( ....... )( , , , , ,........, ) ( ....... )( , , , , ,........, )n nP X Y Z U U U W X Y Z U U U∇ ∇∇ = ∇ ∇∇
 

                                                     
1 2

3
[( ....... )( , , , ,........, )

2(2 1)(( 1)
nRic Y Z U U U X

m m
+ ∇ ∇∇

− +  

                                                      1 2

1
( ....... )( , , , ,....., ) [( ..... )

2( 1)
nRic X Z U U U Y Ric

m
− ∇ ∇∇ − ∇ ∇

+
 

                                                      1 2 1 2( , , , ,....., ) ( ..... )( , , , ,....., )n nY Z U U U X Ric X Z U U U Y− ∇ ∇∇  

                                                    1 22( ....... )( , , , ,......., ) ]nRic X Y U U U Z− ∇ ∇∇ . 

Multiplying equation (2.16) by 1 2( , ,...... )n nA U U U throughout, subtracting the resulting equation from 

(4.4) and then using the fact that the manifold is H-projective n-recurrent and projective n-recurrent, we 

have 

(4.5)    1 2 1 2( ....... )( , , , ,........, ) ( , ,........, ) ( , )n n nRic Y Z U U U A U U U Ric Y Z∇ ∇∇ =  

This shows the manifold is n-recurrent to Ricci. Likewise, it can be seen that if the manifold is both H-

projective n-recurrent and Ricci n-recurrent or n-recurrent projective and Ricci n-recurrent, then it is 

either n-recurrent projective or n-recurrent projective. 

Theorem 4.4. In the manifold 2nM  if any two of the following conditions hold then the third also hold 

for the same proportionality form nA . 

(i) It is H-projective n-recurrent; 

(ii) It is conformal or con-harmonic or con-circular or H-con-harmonic or Bochner n-recurrent; 

(iii) It is Ricci n-recurrent; 

The proof follows the pattern of the proof of the above theorem (4.3). 

Theorem 4.5. If the manifold 2nM be n-symmetric then it is H-projective n-symmetric. 

Proof. Because the n-symmetric manifold, using (2.16) and (2.17) in (4.3), is Ricci n-symmetric, we get 

(4.2), hence the argument. 
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Theorem 4.6. If the manifold 2nM be H-projective n-symmetric and Ricci n-symmetric then it is n-

symmetric. 

Proof:  Using equation (4.2), (2.16) and (2.17) in (4.3), we have (2.15), hence the statement. 

Theorem 4.7. In the manifold 2nM  if any two of the following conditions hold then the third conditions 

also hold: 

(i) It is H-projective n-symmetric; 

(ii) It is projective n- symmetric; 

(iii) It is Ricci n- symmetric. 

Proof. Replacing Q  by W  in (3.18) and then using the resulting equation and (4.2) in (4.4), we get the 

following statement. 

(4.6)    1 2( .......... )( , , , ,..........., ) 0nRic Y Z U U U∇ ∇∇ = , 

Which are (3.15), the remaining part follows similarly. 

 

DISCUSSIONS 

  This work shows that Ricci and Curvature recurrent manifold are still applicable to H-projective 

recurrent techniques. We studied nearly metric structure and KH-structure using advanced techniques for 

classifying Ricci and Curvature Tensor tasks as this is all the latest literature that the bone of the 2nd-

dimensional manifolds offers. Curvature and Ricci recurrent manifold are important roles in dealing with 

the extended 2nd-dimensional modeling space of the celestial body because it constructs the 2nd-

dimensional space and allows for more complicated Tensor structures. We can easily measure all 2n-

manifold structures and spaces in H-projective form nearly n-symmetric manifold, and discuss the 

Buchner con-harmonic, con-circular, H-con-harmonic curvature tensor. 
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ABSTRACT  

In this paper, we define picture fuzzy soft graph and some products of picture fuzzy soft graphs along with their 

properties. 

Keywords: Picture fuzzy soft graph, Cartesian product, direct product, lexicographic product, strong product. 

 

1. INTRODUCTION 

The concept of fuzzy set theory was introduced by Zadeh [9] to solve difficulties in dealing with 

uncertainties. It is a generalization of the theory of crisp set. Singh [8] described picture fuzzy set. 

Rosenfeld [7] introduced the concept of fuzzy graph theory. The concept of fuzzy graph was introduced 

by Mordeson and Nair [6]. 

Muhammad Akram, Sairam Nawaz and Maji [4,5] introduced soft set and fuzzy soft set. Cuong and 

Kreinovich [3] proposed the concept of picture fuzzy set which is a modified version of fuzzy set and 

Intuitionistic fuzzy set. Cen Zuo [2] introduced picture fuzzy graph. [1] introduced many new concepts, 

including soft graphs, fuzzy soft graphs. In this paper, we defined picture fuzzy soft graph and some 

products of picture fuzzy soft graphs along with their properties. 

 

2. PRELIMINARIES 

Definition: 2.1 

 If Z is a collection of object (or element) bestowed by z. Then fuzzy set [7,9] A′  in Z  is expressed as 

a set of ordered pair. 

( ){ }ZzzzA A ∈=′
′ :),( λ  

where, ( )zA′λ  is called the membership function (or characteristic function) which maps Z  to the closed 

interval [0,1]. 

Definition: 2.2 

Let D  be initial universal set, Q  be a set of parameters, ( )D℘  be the power set of D  and QK ⊆ . A 

pair ( )KJ ,  is called soft set [4] over D  if and only if J  is a mapping of K into the set of all subsets of 

the set D .    
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Definition: 2.3 

 A pair ( )KJ ,  is called fuzzy soft set [5] over D , where J  is a mapping given by 
D

IKJ →: , 

D
I  denote the collection of all fuzzy subset of D , QK ⊆ .  

Definition: 2.4 

 Let A′  be a picture fuzzy set[2,3,8]. A′  in Z  defined by  

( ) ( ) ( ){ }ZzzzzzA AAA ∈=′
′′′ :),,,( ϕδλ                                                                                 

where, ( ) [ ]1,0∈′ zAλ , ( ) [ ]1,0∈′ zAδ  and ( ) [ ]1,0∈′ zAϕ  follow the condition 

( ) ( ) ( ) 10 ≤++≤ ′′′ zzz AAA ϕδλ . The ( )zA′λ  is used to represent the positive membership degree, 

( )zA′δ  is used to represent the neutral membership degree and ( )zA′ϕ  is used to represent the negative 

membership degree of the element z in the set A′ . For each picture fuzzy set A′  in Z , the refusal 

membership degree is described as ( ) ( ) ( ) ( )( )zzzz AAAA ′′′′ ++−= ϕδλπ 1 . 

 

3. PICTURE FUZZY SOFT GRAPH 

Definition: 3.1 

 A ordered pair ( )KJ ,  is called picture fuzzy soft set over D , where J  is a mapping given by 

D
IPKJ →: , where 

D
IP  denote the collection of all picture fuzzy subset of D , QK ⊆ . 

Definition: 3.2 

 Let ( )YWG ,*
=′  be a graph, { }nwwwW ,..., 21=  be a non-empty set, WWY ×⊆  , Q  be 

parameter set and QK ⊆ . Also let, 

i.  a)  Aλ  is a positive membership function defined on W  by                                                          

        ( )WIPK
D

A →:λ  ( ( )WIP
D

 denote collection of all picture fuzzy  

                                      subset in W  )                                                                             

      ( ) AkA kk λλ =→  (say) , Kk ∈  and  

      [ ]1,0: →WAkλ  , ( )iAki ww λ→  

      ( )AK λ,  picture fuzzy soft vertex of positive membership function. 

b)  Aδ  is a neutral membership function defined on W  by                                                          

        ( )WIPK
D

A →:δ  ( ( )WIP
D

 denote collection of all picture fuzzy  

                                      subset in W  )                                                                             

      ( ) AkA kk δδ =→  (say) , Kk ∈  and  

      [ ]1,0: →WAkδ  , ( )iAki ww δ→  

      ( )AK δ,  picture fuzzy soft vertex of neutral membership function. 

c)  Aϕ  is a negative membership function defined on W  by                                                          

        ( )WIPK
D

A →:ϕ  ( ( )WIP
D

 denote collection of all picture fuzzy  

                                      subset in W  )                                                                             

      ( ) AkA kk ϕϕ =→  (say) , Kk ∈  and  

      [ ]1,0: →WAkϕ  , ( )iAki ww ϕ→  
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      ( )AK ϕ,  picture fuzzy soft vertex of negative membership function.    

      such that ( ) ( ) ( ) 10 ≤++≤ iAkiAkiAk www ϕδλ  ∀ Wwi ∈ , Kk ∈ ,      

      where  A is a picture fuzzy soft set on W . 

ii. a)  Bλ  is a positive membership function defined on Y  by                                                           

        ( )WWIPK
D

B ×→:λ  ( ( )WWIP
D

×  denote collection of all picture   

                                           fuzzy subset in Y  )                                                                             

      ( ) BkB kk λλ =→  (say) , Kk ∈  and  

      [ ]1,0: →×WWBkλ  , ( ) ( )jiBkji wwww ,, λ→  

      ( )BK λ,  picture fuzzy soft edge of positive membership function. 

b)  Bδ  is a neutral membership function defined on Y  by                                                        

        ( )WWIPK
D

B ×→:δ  ( ( )WWIP
D

×  denote collection of all picture  

                                           fuzzy subset in Y  )                                                                             

      ( ) BeB kk δδ =→  (say) , Kk ∈  and  

      [ ]1,0: →×WWBkδ  , ( ) ( )jiBkji wwww ,, δ→  

      ( )BK δ,  picture fuzzy soft edge of neutral membership function. 

c)  Bϕ  is a negative membership function defined on Y  by                                                          

        ( )WWIPK
D

B ×→:ϕ  ( ( )WWIP
D

×  denote collection of all picture  

                                           fuzzy subset in Y  )                                                                             

      ( ) BkB kk ϕϕ =→  (say) , Kk ∈  and  

      [ ]1,0: →×WWBkϕ  , ( ) ( )jiBkji wwww ,, ϕ→  

      ( )BK ϕ,  picture fuzzy soft edge of negative membership function.    

       where, B is a picture fuzzy soft set on Y . 

Also satisfying the following condition, 

 ( ) ( ) ( )( )jAkiAkjiBk wwww λλλ ,min, ≤ , ( ) ( ) ( )( )jAkiAkjiBk wwww δδδ ,min, ≤ , 

( ) ( ) ( )( )jAkiAkjiBk wwww ϕϕϕ ,max, ≥
 
 and  

( ) ( ) ( ) 1,,,0 ≤++≤ jiBkjiBkjiBk wwwwww ϕδλ ∀  ( ) YWW ji ∈,  , nji ,...2,1, =  and Kk ∈ . Then 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAA KKKKKKYWG ϕδλϕδλ ,,,,,,,,,,,,,*
=′  is said to be picture fuzzy soft 

graph and this denoted by 
*

,, YWKG′ . 

Example: 3.2 

 Consider a simple graph ( )YWG ,*
=′ , where { }321 ,, wwwW =  and ( ) ( ){ }3221 ,,, wwwwY = . 

Let { }321 ,, kkkK =  be the parameter set. Then the picture fuzzy soft graph 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAA KKKKKKYWG ϕδλϕδλ ,,,,,,,,,,,,,*
=′  is described in the table 3.2 and 

figure 3.2                                                                                     
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Table 3.2: Representation of a picture fuzzy soft graph 

(a) (b) 

 

 (c) 

Akϕ  1w  2w  3w  

1k  0.1 0.2 0.4 

2k  0.3 0.3 0.4 

3k  0.1 0.3 0.7 

 

(d)                                           (e)                                            (f) 

 

 

Corresponding to the parameter ( )1k            Corresponding to theparameter ( )2k
 

Akλ  1w  2w  3w  

1k  0.6 0.5 0.1 

2k  0.3 0.2 0.3 

3k  0.4 0.5 0.2 

Akδ  1w  2w  3w  

1k  0.1 0.3 0.2 

2k  0.1 0.2 0.3 

3k  0.1 0.2 0.1 

Bkλ  ( )21,ww  ( )32 ,ww   
Bkδ  ( )21,ww  ( )32 ,ww   

Bkϕ  ( )21,ww  ( )32 ,ww  

1k  0.4 0.1 1k  0.1 0.2 1k  0.2 0.4 

2k  0.2 0.2 2k  0.1 0.2 2k  0.3 0.4 

3k  0.4 0.2 3k  0.1 0.1 3k  0.3 0.7 
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Corresponding to the parameter ( )3k
                                                             

Figure 3.2: picture fuzzy soft graph 
*

,, YWKG′  

 

4. PRODUCTS OF PICTRURE FUZZY SOFT GRAPH 

Definition: 4.1 

 The Cartesian product 
*

,,
*

,, 2211 YWLYWK GG ′×′  of two picture fuzzy soft graph 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWK KKKKKKYWG ϕδλϕδλ ,,,,,,,,,,,,, 11
*

,, 11
=′  and 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWL LLLLLLYWG ϕδλϕδλ ′′′′′′=′ ,,,,,,,,,,,,, 22
*

,, 22
 is defined as ( )YW ,  where, 

21 WWW ×=  , 

( ) ( ) ( ){ } ( ) ( ) ( ){ }121221221121 ,,;,,,,,:,,, YuuWwwuwuYwwWuwuwuY ∈∈∪∈∈=  and 

QLK ⊆,  (parameter set) which satisfy the following, 

i. (a)  ( )( ) ( ) ( )wuwu AfAkfkA λλλ ′∧=′′ ,,  

 (b)  ( )( ) ( ) ( )wuwu AfAkfkA δδδ ′∧=′′ ,,  

 (c)  ( )( ) ( ) ( )wuwu AfAkfkA ϕϕϕ ′∨=′′ ,,    

       
( ) Wwu ∈∀ ,  and ( ) LKfk ×∈,

 

ii. (a)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB λλλ ′∧=′′  

 (b)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB δδδ ′∧=′′  

 (c)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB ϕϕϕ ′∨=′′   

        1Wu ∈∀  , ( ) 221, Yww ∈ and ( ) LKfk ×∈,  

iii. (a)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, uuwwuwu BkAffkB λλλ ∧′=′′  

 (b)  ( ) ( ) ( )( ) ( ) ( )2121,
,,,, uuwwuwu BkAffkB δδδ ∧′=′′  

 (c)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, uuwwuwu BkAffkB ϕϕϕ ∨′=′′                                                



 

AJMI 13(1), Jan.-June, 2021   M. Vijaya, D. Hema 

-80- 

 

        2Ww∈∀  , ( ) 121, Yuu ∈ and ( ) LKfk ×∈,  

Proposition: 4.1 

 If 
*

,, 11 YWKG′ and 
*

,, 22 YWLG′ are two picture fuzzy soft graph. The Cartesian product of 

*
,,

*
,,

*
,, 221133 YWLYWKYWM GGG ′×′=′  is also a picture fuzzy soft graph. 

Definition: 4.2 

 The direct product 
*

,,
*

,, 2211
* YWLYWK GG ′′  of two picture fuzzy soft graph 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWK KKKKKKYWG ϕδλϕδλ ,,,,,,,,,,,,, 11
*

,, 11
=′  and 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWL LLLLLLYWG ϕδλϕδλ ′′′′′′=′ ,,,,,,,,,,,,, 22
*

,, 22
 is defined as ( )YW ,  where, 

21 WWW ×=  , ( ) ( ) ( ) ( ){ }2211212211 ,,,:,,, YwwYuuwuwuY ∈∈=  and QLK ⊆,  (parameter set) 

which satisfy the following, 

i. (a)  ( )( ) ( ) ( )wuwu AfAkfkA λλλ ′∧=′′ ,,  

 (b)  ( )( ) ( ) ( )wuwu AfAkfkA δδδ ′∧=′′ ,,  

 (c)  ( )( ) ( ) ( )wuwu AfAkfkA ϕϕϕ ′∨=′′ ,,   

        ( ) Wwu ∈∀ ,  and  ( ) LKfk ×∈,
 

ii. (a)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk λλλ ′∧=′′  

 (b)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk δδδ ′∧=′′  

 (c)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk ϕϕϕ ′∨=′′  

       ( ) ( ) 221121 ,,, YwwYuu ∈∈∀  and ( ) LKfk ×∈,  

Proposition: 4.2 

 If 
*

,, 11 YWKG′ and 
*

,, 22 YWLG′ are two picture fuzzy soft graph. The direct product of 

*
,,

*
,,

*
,, 221133

* YWLYWKYWM GGG ′′=′ is also a picture fuzzy soft graph. 

Definition: 4.3 

 The lexicographic product 
*

,,
*

,, 2211 YWLYWK GG ′•′  of two picture fuzzy soft graph 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWK KKKKKKYWG ϕδλϕδλ ,,,,,,,,,,,,, 11
*

,, 11
=′  and 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWL LLLLLLYWG ϕδλϕδλ ′′′′′′=′ ,,,,,,,,,,,,, 22
*

,, 22
 is defined as ( )YW ,  where, 

21 WWW ×=  , 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }2211212211221121 ,,,:,,,,,:,,, YwwYuuwuwuYwwWuwuwuY ∈∈∪∈∈=  and 

QLK ⊆,  (parameter set) which satisfy the following, 

i. (a)  ( )( ) ( ) ( )wuwu AfAkfkA λλλ ′∧=′′ ,,  
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 (b)  ( )( ) ( ) ( )wuwu AfAkfkA δδδ ′∧=′′ ,,  

 (c)  ( )( ) ( ) ( )wuwu AfAkfkA ϕϕϕ ′∨=′′ ,,   

         ( ) Wwu ∈∀ , and ( ) LKfk ×∈,
 

ii. (a)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB λλλ ′∧=′′  

 (b)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB δδδ ′∧=′′  

 (c)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB ϕϕϕ ′∨=′′   

       1Wu ∈∀  , ( ) 221, Yww ∈ and ( ) LKfk ×∈,  

ii. (a)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk λλλ ′∧=′′  

 (b)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk δδδ ′∧=′′  

 (c)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk ϕϕϕ ′∨=′′  

        ( ) ( ) 221121 ,,, YwwYuu ∈∈∀  and ( ) LKfk ×∈,  

Proposition: 4.3 

 The lexicographic product of two picture fuzzy soft graph is a picture fuzzy soft graph. 

Definition: 4.4 

 The strong product 
*

,,
*

,, 2211 YWLYWK GG ′′  of two picture fuzzy soft graph 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWK KKKKKKYWG ϕδλϕδλ ,,,,,,,,,,,,, 11
*

,, 11
=′  and 

( ) ( ) ( ) ( ) ( ) ( )( )BBBAAAYWL LLLLLLYWG ϕδλϕδλ ′′′′′′=′ ,,,,,,,,,,,,, 22
*

,, 22
 is defined as ( )YW ,  where, 

21 WWW ×=  , 

( ) ( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }2212212211

121221221121

,,,:,,,

,,;,,,,,:,,,

YwwYuuwuwu

YuuWwwuwuYwwWuwuwuY

∈∈

∪∈∈∪∈∈=
    

  and QLK ⊆,  (parameter set) which satisfy the following, 

i. (a)  ( )( ) ( ) ( )wuwu AfAkfkA λλλ ′∧=′′ ,,  

 (b)  ( )( ) ( ) ( )wuwu AfAkfkA δδδ ′∧=′′ ,,  

 (c)  ( )( ) ( ) ( )wuwu AfAkfkA ϕϕϕ ′∨=′′ ,,   

       ( ) Wwu ∈∀ ,  and ( ) LKfk ×∈,  

ii. (a)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB λλλ ′∧=′′  

 (b)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB δδδ ′∧=′′  

 (c)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, wwuwuwu BfAkfkB ϕϕϕ ′∨=′′   

       1Wu ∈∀  , ( ) 221, Yww ∈ and ( ) LKfk ×∈,  

i. (a)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, uuwwuwu BkAffkB λλλ ∧′=′′  
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 (b)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, uuwwuwu BkAffkB δδδ ∧′=′′  

 (c)  ( ) ( ) ( )( ) ( ) ( )2121, ,,,, uuwwuwu BkAffkB ϕϕϕ ∨′=′′                      

       ( ) 1212 ,, YuuWw ∈∈∀  and ( ) LKfk ×∈,  

ii. (a)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk λλλ ′∧=′′  

 (b)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk δδδ ′∧=′′  

 (c)  ( ) ( )( ) ( ) ( )21212211 ,,,,, wwuuwuwu BfBkBk ϕϕϕ ′∨=′′  

       ( ) ( ) 221121 ,,, YwwYuu ∈∈∀  and ( ) LKfk ×∈,  

Proposition: 4.4 

 The strong product of two picture fuzzy soft graph is a picture fuzzy soft graph. 

 

5. CONCLUSION 

 In this paper, we discussed about the Cartesian product, direct product, lexicographic product, strong 

product of two picture fuzzy soft graph with their properties. 
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ABSTRACT  

In the present paper we have derived the steady-state solutions for a complex network queuing model consisting 

of bi-serial and parallel queuing subsystems commonly connected with a single server. The customers soliciting 

services at bi-serial queuing subsystem arrive in batches of fixed size while at parallel queuing subsystem 

customer arrives one at a time. Finally after getting services at either of the subsystem the customer moves to the 

single server for completion of services. The mean queue length and average waiting time for customers have 

been calculated using generating function technique, laws of calculus and statistical tools. The numerical 

illustration is provided to order to validate the theoretical results.  

Keywords: Bi-serial; parallel; time independent; mean queue length; batch arrival. 

 

1. INTRODUCTION  

 The queuing models with various applications have been studied by many researchers and have gained 

tremendous significance in the present scenario due to congestion problem everywhere. Solution to 

queuing problems with phase type service was examined by O’Brien (1954). Suzuki (1963), Maggu 

(1970) and many other authors studied the waiting line problems with different parameters like bulk 

arrival, impatient customers, sequential arrays, and feedback queue. Madan K.C et al. (2003) examined 

the steady state behavior of bulk queue with multiple vacations and service breakdown. Singh T.P. et al. 

(2005) extended the work by introducing some additional concepts and did a remarkable work in the field 

of queueing theory. Kumar Vinod et al.(2006) and Gupta Deepak et al. (2007,2011) analyzed steady state 

behavior of the queue network models with biserial and parallel service channels linked with common 

channels and computed various queue characteristics. Further Mittal Meenu et al. (2018a, 2018b) studied 

bulk bi-serial queue model with probabilistic and fixed batch size. Gupta D et al. (2020) developed the 

queue model with bulk arrival at parallel queueing systems. Sachin K. et al. (2018) studied tri-cum bi-

serial queuing model connected with a common Server. A stochastic queue model was designed by Singh 

T.P. et al. (2019) for passport office system. Mamta et al. (2019) explored the dynamical system with 

impatient behaviour of the customers. Impatience behaviour the customers with vacation interruption was 

analyzed by Bouchentouf, A. et al. (2020). Preemptive priority retrial queue with Bernoulli working 

vacations was examined by Rajadurai, P. (2019). Radha, J et al. (2020) investigated the retrial queue with 

Bernoulli-2 vacation.  Bi-serial and parallel queueing system with arrival in groups was propounded by 

Gupta R. et al. (2020). The present paper is an extension of the work done by Gupta Deepak (2007) in the 

sense that batch arrival of the customers at bi-serial queuing subsystem is considered instead of individual 

arrival.  
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2.  NOTATIONS 

λ�: Mean arrival rate at first bi-serial server.  

λ�: Mean arrival rate at second bi-serial server. 

λ�: Mean arrival rate at first parallel server. 

λ�: Mean arrival rate at second parallel server. 

��: The exponential service rate of first bi-serial server 

��: The exponential service rate of second bi-serial  server. 

��: The exponential service rate of first parallel server. 

��: The exponential service rate of second parallel server. 

��: The exponential service rate of Single server. 

���: Probability of customer moving from first bi-serial server to second.  

���: Probability of customer moving from second bi-serial server to first. 

��� : Probability of customer moving from first bi-serial server to single server. 

��� : Probability of customer moving from second bi-serial server to single server. 

	� : Batch size at first bi-serial server.  

	� : Batch size at second bi-serial server. 

 

3.  THEORETICAL FRAMEWORK OF THE MODEL 

 The model under consideration comprises of two queuing subsystems 
�, 

 and a single server S. 

The constituents of 
�  are two bi-serial servers 
��  and 
��  while the subsystem 

  consists of two 

parallel servers 

� and 

�. The server S is commonly connected to each of these two subsystems. The 

description of the model is well illustrated with the help of diagram as shown in figure 1.  

3.1 Assumptions  

• The customers entering into the system with mean arrival rate λ1 and λ2 approach to server 
�� and 


�� in batches of fixed size 	� and 	� respectively.   

• After availing services at  
�� , the customer may either joins 
��  with probability ���  for further 

requirement of services or moves to server S with probability ��� for completion of services such that 

��� + ��� = 1. 

• Similarly after getting services at 
�� customer may either joins 
�� with probability ���or moves to 

server S with probability ��� such that   ��� + ��� = 1. 

• Again the customer entering into the system with mean arrival rate λ3 and λ4 approach to server 

� 

and 

� respectively under Poisson assumptions. 

• After availing services at 

�  and   

�, the customer finally moves to the server S.  

• The customer leaves the system after getting services at server S. 
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Figure 1: QUEUE NETWORK MODEL 
 

4.  PRACTICAL ASPECT  

 The developed model is applicable in various real world situations such as in administrative setups, 

office management, banking systems, handling of children parks. For example, consider the systems SB, 

SP and server S as the three different sections in a shopping complex. First is the food section, second is 

drink section and third is billing section, which is common for these two sections. The food section 

further consists of two bi-serial subsections having Indian and Chinese food. Similarly in the drink section 

there are two subsections having cold drink and hot drink. The customers arriving at food section either 

may go to take Indian food or may visit to Chinese food subsection. After taking Indian food, the 

customer either may have Chinese food or may directly go to billing section. Similarly the customer after 

having Chinese food either may have Indian food or directly may go to billing section. Again the 

customer arriving at drink section may either go to take cold drink or may go to take hot drink as per his 

interest and thereafter he will go to billing section. After paying bill the customer leaves the mall.   

 

5.  MATHEMATICAL DESCRIPTION 

       � ��,��,��,��,�� , indicates the probability of having exactly n�,  n�, n�, n�and n�   calling units in the 

queuing system, waiting in queues in front of servers 
��, 
��, 

�, 

� ��� � !" ! 
.  
 Where �� >  	�, �� > 	�, �� > 0, �� > 0 ����� > 0.  

Differential difference equation in steady-state form is defined as follows: 

• *+, -. > /.,  -0 > /0, -1,  -2,  -3 > 0 

(4�+4�+4� + 4� + µ�+µ�+µ�+µ�+µ�)���,��,��,��,��            

                             = 4����56�,��,��,��,�� + 4����,��56�,��,��,��                

+µ�������7�,��5�,��,��,�� +µ�������7�, ��,��,��,��5�       

+µ�������5�,��7�,��,��,��+µ�������, ��7�,��,��,��5�+4����,��,��5�,��,�� 

+4����,��,��,��5�,��  +µ����,��,��7�,��,��5�   
+µ����,��,��,��7�,��5� + µ����,��,��,��,��7�        (1) 

By considering all the possible combination of different values of 8.,  80, 81,  82 ��� 83 , 
71 more differential difference equations in steady- state are obtained.  
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The system of steady state equations is solved using generating function technique. 

Generating function is defined as follows: 

F(X, Y, Z, R, S) = ∑ ∑  ∞:₂;<∞:₁;< ∑   ∞:₃;< ∑ ∑   ∞:�;<∞:�;< =��>��?��@��
��
                     

Also for simplification, partial generating function is defined as: 

 A:�,:�,:�,:�(X) = ∑  ∞:₁;< �:�,:�,:�,:� =��                                                                                       

 A:�,:�,:�(X, Y) = ∑  ∞:�;< A:�,:�,:�,:�  >��                                                                                          
 

A:�,:�(X, Y, Z) = ∑  ∞:�;< A:�,:�,:� ?��                                   

A:�(X, Y, Z, R) = ∑  ∞:�;< A:�,:� @��                                       

A(X, Y, Z, R, S) = ∑  ∞:�;< A:�  
��                          

On solving the system of steady- state equations (1-72), by applying the generating function defined as 

above and using the laws of calculus, we obtained the final reduced equation as: 

ABX, Y, Z, R, SH = 

IJ
JJ
Kµ�L�5  M��N

O  5 M��P
O QRSBT,U,V,WH7µ�L�5  M��O

N  –  M��P
N QRSBY,U,V,WH7µ�L�5 PZQRSBY,T,V,WH

7µ�L�5 P[QRSBY,T,U,WH7µ�L�5 �PQRSBY,T,U,VH
\�]�5  Y^�_7\�]�5  T^�_7µ�L�5  M��N

O  5  M��P
O Q7µ�L�5  M��O

N  –  M��P
N Q

7\�B�5 UH7\�B�5 VH7µ�L�5 PZQ7µ�L�5 P[Q7µ�L�5 �PQ
àa
a
b
 

               (2) 

For convenience, we denote  

 F1= F0 (Y, Z, R, S), F2 = F0 (X, Z, R, S)  

 F3 = F0 (X, Y, R, S), F4= F0 (X, Y, Z, S) 

  F5=F0(X, Y, Z, R)             (3) 

Using these values, equation (2) can be rewritten as:  

ABX, Y, Z, R, SH =
IJ
JJ
K µ�L�5  M��N

O  5  M��P
O QR�7µ�L�5  M��O

N  –  M��P
N QR�7µ�L�5 PZQR�

7µ�L�5 P[QR�7µ�L�5 �PQR�
\�]�5  Y^�_7\�]�5  T^�_7µ�L�5  M��N

O  5 M��P
O Q7µ�L�5  M��O

N  –  M��P
N Q

7\�B�5 UH7\�B�5 VH7µ�L�5 PZQ7µ�L�5 P[Q7µ�L�5 �PQ
àa
a
b
            (4) 

At X=Y=Z=R=S=1, the above equation (4) reduces to indeterminate form  B0 0⁄ H. 

Also F (1, 1, 1, 1, 1) = 1 (Total Probability) 

Applying L’Hospital Rule for indeterminate form and using the condition  

��� + ��� = ���+��� = 1, the following results are obtained:  

              -λ1b1+ µ�- µ� ��� = µ�F1 - µ� ���F2         (5) 

  - λ2b2 - µ� ��� + µ� = - µ���� F1 + µ� F2                                             (6) 

              - λ3 +µ� = µ�A�          (7) 

              - λ4 +µ�= µ�A�          (8) 

             -µ����- µ���� - µ�- µ�+ µ� = -µ����F� -µ����A�- µ�A�-µ�A�+µ�A�      (9)  

Multiplying (6) by ��� & adding to (5), we get: 

       A�  =   1 − λ�f�7λ�f�g��
µ�B�5h��h��H          (10) 

Again (5)* ��� + (6), gives 

- λ1b1 ��� – λ2b2 + µ�(1- ������) = µ�(1-������)A� 

      A�  =  1 −  λ�f�g��7λ�f�
µ�B�5h��h��H           (11) 

From (7) & (8), we obtain: 
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       A�  =  1 − λ�
µ�

 , A�  =  1 − λ�
µ�

         (12) 

Substituting these values in (9), we extract: 

     A� = 1 − iBλ�7λ�H
µ�

+ h��Bλ�f�7λ�f�g��H7h��Bλ�f�g��7λ�f�
µ�B�5h��h��H j        (13) 

The solution of the model is given as: 

���,��,��,��,�� =  ρ�
:�ρ�

:�ρ�
:�ρ�

:�ρ�
:�B1 − ρ�H B1 − ρ�HB1 − ρ�HB1 − ρ�HB1 − ρ�H  

Where  

ρ�  =  1 − A�  =    λ�f�7λ�f�h��
µ�B�5h��h��H,  

ρ� = 1 − A� =    λ�f�h��7λ�f�
µ�B�5h��h��H,  

 ρ� = 1 − A� =  
λ�
µ�

 , 

 ρ� = 1 − A�  =   λ�
µ�

 

  ρ� = 1 − A� = iBλ�7λ�H
µ�

+ h��Bλ�f�7λ�f�g��H7h��Bλ�f�g��7λ�f�
µ�B�5h��h��H j    

The solution in steady state exists, if the condition  

  ρ�, ρ� , ρ� , ρ�, ρ� < 1   is satisfied. 

 

6.  PERFORMANCE MEASURES 

6.1 Expected Number of Units In the System(Mean Queue Length) Ls 

 

lm = l� + l� + l� + l� + l�  

lm = n�
�5n�

+ n�
�5n�

+ n�
�5n�

+ n�
�5n�

+ n�
�5n�

          

 lm =  \�6�7\�6�h��
µ�B�5h��h��H5B\�6�7\�6�h��H + \�6�h��7\�6�

µ�B�5h��h��H5B\�6�h��7\�6�H + \�
µ�5\�

+ \�
µ�5\�

                                     

+ B\�7\�HB�5h��h��H7h��B\�6�7\�6�h��H7h��B\�6�h��7\�6�H
µ�B�5h��h��H5{B\�7\�HB�5h��h��H7h��B\�6�7\�6�h��H7h��B\�6�h��7\�6�H}                   (14) 

 

6.2 Expected Waiting Time for Customers in the system 

               (Waiting includes service time) 

 q� =   rm
\  , where 4 = 4� +  4� +  4� + 4�   

   

 q� =
 �
 \ s \�6�7\�6�h��

µ�B�5h��h��H5B\�6�7\�6�h��H + \�6�h��7\�6�
µ�B�5h��h��H5B\�6�h��7\�6�H + \�

µ�5\�
+ \�

µ�5\�
+

                + B\�7\�HB�5h��h��H7h��B\�6�7\�6�h��H7h��B\�6�h��7\�6�H
µ�B�5h��h��H5{B\�7\�HB�5h��h��H7h��B\�6�7\�6�h��H7h��B\�6�h��7\�6�H}t       (15) 

 

6.3 Variance of Queue Length 

Var (�� + �� + �� + �� + �� H = 
n�

[�5n�]� + n�
[�5n�]� + n�

[�5n�]� + n�
[�5n�]� + n�

[�5n�]� 

 = 
µ�B�5h��h��HB\�6�7\�6�h��H

[µ�B�5h��h��H5B\�6�7\�6�h��H]� + µ�B�5h��h��HB\�6�h��7\�6�H
[µ�B�5h��h��H5B\�6�h��7\�6�H]� + \�µ�

[µ�5\�]� + \�µ�
[µ�5\�]� 

+ µ�B�5h��h��H{B\�7\�HB�5h��h��H7h��B\�6�7\�6�h��H7h��B\�6�h��7\�6�H}
[µ�B�5h��h��H5{B\�7\�HB�5h��h��H7h��B\�6�7\�6�h��H7h��B\�6�h��7\�6�H}]�         (16) 
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7.  NUMERICAL ILLUSTRATION 

 We discuss the behavior of the model by considering the numeric values of various parameters as 

given in table 7.1 

Table 1: Numeric Values 
Arrival Rates Service Rates Batch Sizes Associated 

Probabilities 

λ� = 1 μ� = 17 b� = 2  p�� = 0.2 

λ� = 4 μ� = 32 b� = 3  p�� = 0.8 

λ� = 2 μ� = 10  p�� = 0.4 

λ� = 3 μ� = 13  p�� = 0.6 

 μ� = 40   

The mean queue length, average waiting time and variance of queue with respect to the parametric values 

(given in table 1) obtained are as follows: 

• Mean queue length 

Substituting the values from table 1 in equation (14), we get: 

Ls=  λ�f�7λ�f�h��
µ�B�5h��h��H5Bλ�f�7λ�f�h��H+

λ�f�h��7λ�f�
µ�B�5h��h��H5Bλ�f�h��7λ�f�H + λ�

µ�5λ�
+ λ�

µ�5λ�
+     

+ Bλ�7λ�HB�5h��h��H7h��Bλ�f�7λ�f�g��H7h��Bλ�f�g��7λ�f�H
µ�B�5h��h��H5{Bλ�7λ�HB�5h��h��H7h��Bλ�f�7λ�f�g��H7h��Bλ�f�g��7λ�f�H} 

Ls= �7�×�×<.�
�|B�5<.�×<.�H5B�7�×�×<.�H+

�×<.� 7 �×�
 ��B�5<.�×<.�H5B�×<.� 7 �×�H + �

�<5� + �
��5� 

+ �B�5<.�×<.�H7<.}B�7�×�×<.�H7<.~B�×<.� 7 �×�H
�<B�5<.�×<.�H5{�B�5<.�×<.�H7<.}B�7�×�×<.�H7<.~B�×<.� 7 �×�H} 

Ls = 2.93 

• Average waiting time of customer 

Making use of equation (15), we get: 

 Ws =  
��
\  , where   4 = λ� + λ� +  λ� + λ� 

 Ws   =  
�

�< (2.93) = 0.293  

• Variance of queue length 

Utilizing the values from the table in equation (16), we get: 

Var (n� + n� + n� + n� + n� H   
 = 

µ�B�5h��h��HBλ�f�7λ�f�h��H
[µ�B�5h��h��H5Bλ�f�7λ�f�h��H]� + µ�B�5h��h��HBλ�f�h��7λ�f�H

[µ�B�5h��h��H5Bλ�f�h��7λ�f�H]� + λ�µ�
[µ�5λ�]� + λ�µ�

[µ�5λ�]� 

+ µ�B1 − ������H{B4� + 4�HB1 − ������H + ���B4�	� + 4�	����H + ���B4�	���� + 4�	�H}
[µ�B1 − ������H − {B4� + 4�HB1 − ������H + ���B4�	� + 4�	����H + ���B4�	���� + 4�	�H}]� 

Var (n� + n� + n� + n� + n� H   
= 

�~}.~�
[}.}�]� + 

�~�.<�
[�|.<�]� + 

�<
[}]� + 

��
[�<]� + 

~��.�~
[��.��]� 

= 7.07 
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8.  CONCLUSION 

 The proposed model studies a queue network model with batch arrival consisting of biserial and 

parallel channels linked with a common server. The time independent behavior of the system is discussed 

and analyzed numerically. If individual arrival is considered at biserial queuing subsystem instead of 

batch arrival, the results obtained tally with that of Gupta et al. (2007), which confirms the validity of 

results. The performance measures obtained have managerial implications, the system analyst and 

industry people may redesign the system by managing the queues in an effective way and hence the 

congestion problem may be reduced.  

 

9.  LIMITATIONS AND FUTURE SCOPE  

The model under consideration is limited to two queueing subsystems only. The research can be further 

extended in future by:   

• Adding one more parallel or biserial queueing subsystem.   

• Considering tri-cum biserial servers instead of two biserial servers. 

• Introducing three or more parallel servers with bulk arrival. 
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1.  INTRODUCTION 

 Mudholkar and srivastava [1] introduced the exponentiated Weibull distribution. According to 

Oluwafemi and Olakan [2], the probability density function of exponentiated Weibull distribution is given 

by 

 ( )

1

1
1 0

k k

k

k

k x x
f x; x exp exp    ; x .

θ

θ
θ

λ λ λ

−

−
       

= − − − >                
             (1) 

The joint density function or likelihood function of (1) is given by 

 ( ) ( )11

11

1 1

kn
i

i

x kn n n
k i
ik

ii

xk
f x; x e exp log exp

λθ
θ θ

λ λ
=

 
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 −

==

   ∑      = − − −                  
∑∏  .            (2) 

The log likelihood function is given by 

( ) ( )1

1 11

1 1

k kn n n
k i i
ik

i ii

x xk
log f x; nlog log x log exp

θ
θ θ

λ λ λ

−

= ==

        
= + − + − − −                    

∑ ∑∏ .           (3) 

Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ 

which is given as 

 

1
1

1

1

kn
i

i

x
n log expθ

λ

−
−

∧

=

     = − −          

∑ .                 (4) 

 



 

AJMI 13(1), Jan.-June, 2021   Arun Kumar Rao, Himanshu Pandey 

-92- 

 

2.  BAYESIAN METHOD OF ESTIMATION 

 The Bayesian inference procedures have been developed generally under squared error loss function 

 

2

L ,θ θ θ θ
∧ ∧   

= −   
   

.                   (5)  

The Bayes estimator under the above loss function, say, sθ
∧

 is the posterior mean, i.e, 

  ( )S Eθ θ
∧

= .                    (6)  

Zellner [3], Basu and Ebrahimi [4] have recognized that the inappropriateness of using symmetric loss 

function. Norstrom [5] introduced precautionary loss function is given as 

 

2

L ,

θ θ

θ θ

θ

∧

∧

∧

 
− 

   
= 

 
.                   (7)  

The Bayes estimator under this loss function is denoted by Pθ
∧

 and is obtained as 

 ( )
1

22
P Eθ θ

∧

 =   .                    (8) 

Calabria and Pulcini [6] points out that a useful asymmetric loss function is the entropy loss 

 ( ) ( ) 1p

eL p logδ δ δ ∝ − −   

where  ,
θ

δ
θ

∧

=  and whose minimum occurs at .θ θ
∧

=
 
Also, the loss function ( )L δ  has been used in Dey 

et al. [7] and Dey and Liu [8], in the original form having 1p .=  Thus ( )L δ  can written be as 

( ) ( ) 1eL b log ;  b>0.δ δ δ= − −                      (9) 

The Bayes estimator under entropy loss function is denoted by Eθ
∧

 and is obtained by solving the 

following equation 

 

1
1

E E .θ
θ

−
∧   

=   
  

                  (10) 

Wasan [9] proposed the K-loss function which is given as 

 

2

L ,

θ θ

θ θ

θ θ

∧

∧

∧

 
− 

   
= 

 
.                 (11)  

Under K-loss function the Bayes estimator of θ is denoted by Kθ
∧

 and is obtained as 

 
( )

( )

1

2

1
K

E

E

θ
θ

θ

∧  
=  
 

.                  (12) 

Al-Bayyati [10] introduced a new loss function which is given as 

 

2

cL ,θ θ θ θ θ
∧ ∧   

= −   
   

.                       (13)  
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by Alθ
∧

 and is obtained as 

 
( )

( )

1c

Al
c

E

E

θ
θ

θ

+
∧

= .                  (14) 

Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may use 

the quasi density as given by 

 ( )1

1
0 0

d
g  ; , d ,θ θ

θ
= > ≥                  (15)  

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 

(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter θ given by 

 ( )
( )

1

2 0g e  ; .
α

α βθβ
θ θ θ

α

− −
= >

Γ
                (16) 

 

3.  POSTERIOR DENSITY UNDER ( )1g θ  

The posterior density of θ under ( )1g θ , on using (2), is given by 
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Theorem 1. On using (17), we have 
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Proof.  By definition, 

( ) ( )c cE f x dθ θ θ θ= ∫   
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From equation (18), for 1c = , we have 
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From equation (18), for 2c = , we have 
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From equation (18), for 1c = − , we have 
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From equation (18), for 1c c= + , we have 
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∑ .            (22) 

 

4.  BAYES ESTIMATORS UNDER ( )1g θ   

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 
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∑ .              (23) 

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained 

as 
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∑ .            (24) 

From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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∑ .           (26) 

From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function 

comes out to be 
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5.  POSTERIOR DENSITY UNDER ( )2g θ     

Under ( )2g θ , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2. On using (28), we have 
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Proof.  By definition, 

( ) ( )c cE f x dθ θ θ θ= ∫  

( )

1

1

1

1
1

1

0

1 kn
i

i

n
kn

i
x

log exp
i

n c

x
log exp

 e d
n

α

β θ
λ

α

β
λ

θ θ
α

−

=

+
−

       − + − − ∞  =       + + −  

     + − −      ∑     
=

Γ +

∑

∫  

( )

( )

1

1

1

1

1

1

n
kn

i

i

n c
kn

i

i

x
log exp

n c

n
x

log exp

α

α

β
λ

α

α

β
λ

+
−

=

+ +
−

=

     + − −          Γ + + 
=

Γ +      + − −          

∑

∑

  

( )

( )

1

1

1

c
kn

i

i

n c x
log exp

n

α
β

α λ

−
−

=

   Γ + +   = + − −     Γ +      

∑ . 

From equation (29), for 1c = , we have 
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From equation (29), for 2c = , we have 
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From equation (29), for 1c = − , we have 
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From equation (29), for 1c c= + , we have 
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6.  BAYES ESTIMATORS UNDER ( )2g θ   

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained 

as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function 

comes out to be 
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CONCLUSION 

 In this paper, we have obtained a number of estimators of parameter of exponentiated Weibull 

distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In 

equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss 

functions using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes 

estimators under different loss functions using gamma prior. In the above equation, it is clear that the 

Bayes estimators depend upon the parameters of the prior distribution. We therefore, recommend that the 

estimator’s choice lies according to the value of the prior distribution which in turn depends on the 

situation at hand. 
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ABSTRACT 

The paper introduces a deterministic inventory model for declining goods with a demand rate that is increased to 

the power m by three. The cost of keeping is believed to be constant. This listing is for a single item. The lead 

time is zero. The shortages are approved and are completely backlogged. The solution of a differential equation 

for a sale price-dependent demand rate is the focus of this paper. This model estimated the total optimal cost, 

which was then numerically checked. Two-dimensional and three-dimensional graphs are used to verify the 

model's convexity. For the graphical presentation, Maple software is used. 

Keywords: Inventory model, Time Dependent, Deterioration, Shortages, Fractional Polynomial. 

 

INTRODUCTION 

 Some products, such as tomatoes, fruit, biscuits, and other products, deteriorate after a certain period 

of time. Some researchers, while it was supposed to be a constant by others, considered demand rate a 

linear or quadratic function of time. The selling price or the passing of time decide the demand rate for 

such goods. Mandal and S. Phaujdhar [1] created an inventory model that took demand rate into account 

for declining goods. MohitRastogi, S.R. Singh, Prashant Kushwaha, and Shilpy Tayal [2]invented the 

inventory model with price-sensitive demand. With linear demand and constant deterioration, Vinod 

Kumar Mishra and Lal Sahab Singh formed deteriorating inventory. 

K. Jalan, R. R. Giri, and K. S. Chaudhuri [3] developed EOQ model with linear demand and Weibull 

distribution deterioration and [4] considered linear demand with exponential decline. Kuo-Lung Hou [5] 

constructed a model with linear demand and constant deterioration and is applied to on-hand inventory. Y. 

K. Shah [6], and RAM B. MISRA [7] invented deterministic inventory with constant demand rate, and no 

replacement or repair is permitted within a given period. 

Mingbao Cheng and Guoqing Wang [8]With a trapezoidal style demand rate and a constant deterioration 

rate, built an inventory model for deteriorating goods. Chaitanya Kumar Tripathy and Umakanta Mishra 
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in [9] presented an order- level inventory system with time-dependent Weibull deterioration and a ramp 

type demand rate, in which supply and demand are time-dependent. S.K.Ghosh and K.S.Chaudhuri [10] 

developed an inventory model for deteriorating products with instantaneous supply, quadratic time-

varying demand, and a two parameter Weibull distribution to reflect time deterioration. S.R. Singh and 

Himanshu Rathore found the rate of deterioration to be a regulated variable and demand to be linearly 

related to time in 2014. Later in 2106, Nita H. Shah with Urmila Chaudhari and Mrudul Y. Jani [11]For 

the time-varying deteriorating item under time and price-sensitive demand, developed an integrated 

production-inventory model with preservation technology investment. and Nita Shah in 2018 with 

Monika K. Naik constructed an EOQ model for the deteriorating item under full advance payment 

availing of discount when demand is price-sensitive. Abu Hashan Md Mashud [12] developed An EOQ 

deteriorating inventory model with different types of demand and fully backlogged shortages where he 

considers demand rate as a function of time as well as selling price. 

Ajanta Roy [13] invented an inventory model for deteriorating items with price dependent demand and 

time-varying holding cost. R. Amutha and Dr.E .Chandrasekaran [14] developed an inventory model for 

deteriorating products with Weibull Distribution deterioration, partial backlogging, and time-varying 

demand. Recently Yadav, H.,Vinodkumar and Singh, T.P.[21] explored an inventory model for weibull 

rate of deteriorating items, shortages, partial backlogging with quadratic demand rate.  

 This paper establishes an inventory model for deteriorating goods based on a single item with a demand 

rate that is a function of time raised to the power m by three and a constant deterioration rate. The cost of 

keeping is thought to be constant, and shortages are both permitted and prohibited. 

 

FORMULATION AND SOLUTION OF MATHEMATICAL MODE   

Assumptions And Notations: 

Notations: 

D -  Demand Rate. 

DC -   Deterioration Cost. 

A   -  The ordering cost. 

HC – Holding Cost. 

 Q  -  Order Quantity 

θ -   Deterioration Rate. 

C -  Purchase Cost per unit 
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L   -   Order Quantity 

Ω -  The time when inventory level reached zero. 

 T -  The length of a cycle time. 

SC - Shortage cost per unit time. 

TIC - Total inventory cost. 

I(t)  - Inventory level. 

Assumptions: 

 The inventory Model uses the following assumptions:- 

� The demand rate is fractionally dependent on time which is of type  m by three 

3( )
m

D t tα β= + and  α≥0, β≥0. 

� Holding cost per unit time is constant  

   H(t) = HC , where HC ≥0. 

� The Order quantity per cycle is Q.  

� Shortages are allowed and are fully bloclogged. 

� The lead time is zero. 

� The deterioration rate is 

                  ( ) , 0 1tθ γ γ= < <  

� Ordering cost per item is A 

� The shortage cost per unit time is sC  

� This inventory Model deals with single item . 

� Ω is the time at which inventory level reaches zero and Ω≥0. 

� TIC is assumed as total inventory cost. 

� I(t) is assumed as inventory level. 

� C is assumed as the purchasing cost per unit. 

In the period (0,Ω) inventory is positive and in the period (Ω,T) the inventory level is negative .  

 

MATHEMATICAL FORMULATION 

 In the period (0,Ω)inventory level is positive and decreasing and at time  t=Ω, the inventory level 

reaches to zero and shortage starts and inventory became negative in the period  (Ω,T) .The differential 

equation for instantaneous inventory level at time t is as follows :- 

 1 3
( )

( ) ( );0
m

dI t
I t t t

dt
γ α β+ = − + ≤ ≤ Ω                           (1) 
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 2 3
( )

( );
m

dI t
t t T

dt
α β= − + Ω ≤ ≤                                      (2) 

 where m is an odd natural number 

 with boundary conditions 

1 2( ) ( ) 0I t I t= = at t= Ω  

2 ( )I t J= at t T=  and 1( )I t E=  at t=0 

          On solving equation (1) and neglecting higher powers of t , we get 
3 3 6 6

2 23 3 3 3
1

3 3
( ) [ ( ) ( ) ( ) ( )

3 2 6

m m m m

I t t t t t
m m

β αγ βγ
α

+ + + +

= Ω − + Ω − + Ω − + Ω −
+ +

 

 
9 92 2

3 3 3 3( ) ( )]
6 9

m m
n

t t
m

αγ βγ
+ +

+ Ω − + Ω −
+     

(3) 

  On solving (2), we get 

 
3 3

3 3
2

3
( ) ( ) ( )

3

m m

I t t t
m

β
α

+ +

= Ω − + Ω −
+

                                                             (4) 

  Now using condition  1( )I t E= at t=0, we get 

3 6 92 2
2 33 3 3

3 3 3

3 2 6 6 9

m m m

E
m m m

β αγ βγ αγ βγ
α

+ + +

= Ω + Ω + Ω + Ω + Ω + Ω
+ + +

 

  Now using the condition  2 ( )I t J= − at t=T, we get 

 
3 3

3 3
3

( ) ( )
3

m m

J T T
m

β
α

+ +

= Ω − + Ω −
+

 

 Now the order quantity per cycle is given by  

 Q = E -J 
3 6 92 2

2 33 3 3
3 3 3

3 2 6 6 9

m m m

Q
m m m

β αγ βγ αγ βγ
α

+ + +

= Ω + Ω + Ω + Ω + Ω + Ω
+ + +

 

3 3

3 3
3

( ) ( )
3

m m

T T
m

β
α

+ +

− Ω − − Ω −
+          

(5) 

Now the inventory holding cost per cycle is given by: 

1
0

( )HIHC C I t dt
Ω

= ∫  
6 9 122 2

2 3 43 3 3
3 3 3 3

[ ]
2 6 3 9 8 12

m m m

HIHC C
m m m

α β αγ βγ αγ βγ
+ + +

= Ω + Ω + Ω + Ω + Ω + Ω
+ + +

    (6) 

Total amount of inventory shortage cost per unit time during the period (Ω,T) is given by: 

 2 ( )
T

SISC C I t dt
Ω

= ∫  

3

3 3

3
3

[ ( ) ( )]
3

m m
T

SISC C t t dt
m

β
α

+ +

Ω
= Ω − + Ω −

+∫  
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2 3 3 32
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  Now, Inventory deterioration cost per item is given by: 

3

0
[ ( ) ]

m

DIDC C E t dtα β
Ω

= − +∫  

 
3 6 2

2 33 3
3 3

[
3 2 6 6

m m
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m m

β αγ βγ αγ
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+ +
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+ +

 

  
9 32

3 3
3 3

]
9 3

m m
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βγ β
α

+ +

+ Ω − Ω − Ω
+ +          

(8) 

 The inventory ordering cost per order during (0,Ω) is given by: 

  IOC = A           (9) 

 Now, the total cost per unit time for the cycle is given by                          

1
[ ]TIC IHC ISC IDC IOC

T
= + + +  
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2 3 43 3 3
1 3 3 3 3

[ [ ]
2 6 3 9 8 12

m m m

HTIC C
T m m m

α β αγ βγ αγ βγ
+ + +

= Ω + Ω + Ω + Ω + Ω + Ω
+ + +

 

3 6 62 2

3 3 3
3 3 ( 3)

[ ( ) ( )]
2 2 3 6 ( 6)

m m m

S

T m
C T T T

m m m

β
α

+ + +
Ω +

+ Ω − − + Ω − − Ω
+ + +

 

3 6 2
2 33 3  

3 3
[

3 2 6 6

m m

DC
m m

β αγ βγ αγ
α

+ +

+ Ω + Ω + Ω + Ω + Ω
+ +

9 32

3 3
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    (10)

 
In order to minimize the total inventory cost , we find the optimal values of   T and Ω. The optimal values 

of T and  Ω can be obtained by equating the partial derivatives of 

total inventory cost with respect to T and Ω respectively to zero. 

For optimal value of Ω and T we have  

( )
0

TIC∂
=

∂Ω
                                        (11)

 

and 

( )
0

TIC

T

∂
=

∂
                                   (12)

 

 The total minimum cost per unit time TIC (T, Ω ) satisfy by sufficient condition  

  

2

2

( )
0

TIC

T

∂
>

∂
                         (13)
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and 

    

2

2

( )
0

TIC∂
>

∂Ω
                                  (14) 

and 

 2 2 2

2 2

( ) ( ) ( )
* 0

TIC TIC TIC

T T

∂ ∂ ∂
− >

∂ ∂Ω ∂Ω∂
                   (15)

 

 

 We get the value of Ω   by solving equation  (11)  and  We can get the value of T by solving equation  

(12) and  putting these value in equation(10) , we obtain the minimum cost per unit time for the values 

which satisfy the necessary condition(13) , (14) and(15). 

 

NUMERICAL EXAMPLE 

 Now, we consider a numerical example to examine the optimization of the solution. We used maple 

18 Mathematical software to solve example. 

To explain the model numerically, the following parameters of the inventory system are:  α= 14, β= 10, 

ϒ= 12, HC = 28, SC  = 15, A = 500, DC =10, n=1. 

We get the optimal shortage value by the above given parameters by using Maple 18 ,Ω=0.9333011846

1
e

−  , T = 5.044843514. 

Finally the total optimal cost obtained is TIC =5559894.478.  The graph is as shown in figure 1.and its 

three dimensional picture is shown in figure 2. 

 
Figure1. shows total cost function verse 
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Figure 2. shows total cost function verses Ω and T 

 

CONCLUDING REMARKS 

 A deterministic inventory model based on time raised to the power n by two, constant decline rate, 

and constant holding cost is built in this paper. The total optimal cost has been calculated for the values of 

Ω and T, satisfying the necessary condition. The model has been tested using numerical and graphical 

diagrams. This model refers to the model in which demand changes fractionally over time as commodity 

prices increase day by day. As a result, future cities and businesses will benefit greatly from the paradigm. 
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EXECUTIVE SUMMARY/ABSTRACT 

As per market study (Analytics India Magazine and Praxis Business School study, 2019), the cumulative data 

analytics market size is $30 Bn. The further breakup reveals that the outsourcing is the main driver of revenue 

for Indian vendors accounting for $27 billion in revenue andthe domestic analytics market stands at $3.03 

billion in size. The domestic market is expected to double by 2025. The Indian IT services companies such as 

TCS, Wipro are leading revenue generators in data analytics services. The market study further states that 

Bengaluru is the analytics hub with market share of 28%. Looking at the market size for outsourcing business 

and growth rate of domestic business for data analytics, it is apt to consider challenges for both type of 

businesses. Currently, India is top outsourcing destination. However, to retain the top spot and harness domestic 

business opportunities, India needs to tackle challenges such as availability of right skill sets, legal framework/ 

data privacy laws, data capturing mechanism, data availability, accuracy, and timeliness of data. This paper 

starts with briefly explaining the India's market size of the analytics (offshore and domestic), her current 

standing and then elaborates the list of challenges and finally concludes with the recommendations to tackle 

these challenges. 

 

1. CURRENT CHALLENGES 

Availability of enough Data 

 Data availability is a major challenge in our country. The driver to availability of quality data is 

digitalization and record of every transaction. The very first step whenever a newborn land on earth is to 

get it registered within 21 days of birth. However, according to a report published in 2020, still approx. 

20% of births in India go unregistered leading to a parallel economy of cash surviving on street vending 

and on cash. According to report published in Bloomberg ,“India do not produce data on household 

income and expenditure, something which is common in most other countries, at even an annual 

frequency. Similarly, we do not have high-frequency data on the services sector of the economy – a sector 

that accounts for almost 60 percent of output. The list of important but missing data points on the 

economy is long”.A vision with name SDG(sustainable Development Goals) was shared by UN with 

member nations with list of 17 goals and corresponding 169 indicators  for measurement to address the 

social, economic, and environmental dimensions of sustainable development in a balanced manner. India 

too have embarked on the journey but currently ranks poorly at 117th place with Sweden on top as on 

2020.The measurement involved in these indicators’ banks primarily on percentage and data is key to 

such measurement. Due to lack of enough data availability, India is not able to produce metrics for 

majority of these indicators. 

Timeliness of Data 
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Second challenge analytics facing w.r.t Indian economy is timeliness of the data. According to a report in 

Bloomberg quint1 “some high-frequency data – the current account data, which is important for the 

currency market, and by implication for monetary policy, is released by the RBI 2.5 to 3 months after the 

quarter has ended. The data for a quarter is thus released almost at the end of the following quarter, by 

which time it becomes stale. The industrial production data, which is an important gauge of short-term 

economy is released more than 40-days after the month has ended. The data for August, the month in 

which we currently are, will be released in mid-October. In contrast, inflation data is released with a lag 

of fewer than two weeks after the end of the month and is thus highly useful as it is near ‘real-time’. The 

latest period for which the highly comprehensive data on organized manufacturing – the Annual Survey 

of Industries was available for the year 2015-16. There was no data yet for the year 2016-17 untilmid of 

2018-19. Take the whole debate over minimum support prices or farm loan waivers. The last survey that 

went into detail over what farmer incomes were, what their debt levels are and of the reach and 

effectiveness of MSPs was in 2013 – 5 years ago. And the one prior to that was 10 years back. So, we 

have just two data points in the last 15 years.” 

Accuracy of Data 

Multiple revisions in key data such as GDP, IIP, WPI inflation from government leads to confusion and 

questioning on veracity of data produced.According to a report in Bloomberg1” Take the latest revision to 

the GDP series a couple of years back. The data as per the new series was counter-intuitive to many, and 

questions were raised about its accuracy. The data might very well be accurate, but when honest questions 

are simply ignored and brushed over, this deepens suspicion. There must be a willingness on the part of 

bureaucrats to engage with users of data to address the to engage with users of data toaddress their 

concerns. 

Take the survey on household expenditure that NSSO conducts or used to conduct. It gives very detailed 

data on household consumption across categories and regions. This is a widely used data set. However, 

the expenditure aggregated as per this survey is only 50 percent of the household expenditure reported by 

National Accounts. This clearly seems wrong prima facie. The government knows this. But beyond 

attributing this to methodological issues, there is no attempt to explain the difference in such a way that 

the data could be then used keeping its limitations in mind”. 

Analyzing massive, complex, and ever-changing data sets 

We live in a country of diversity and varied tastes.Even with homogeneity, data insights become 

meaningless if there are frequent changes to behavior of customers. A data arising from a country like 

India is not only massive but rather changing frequently as people’s transactions in day to day life are also 

changing with upgradation in lifestyles, social media promotions and change in phase of life (e.g. single 

to married, married to being parent, from being parent to grow into senior citizens,changing health etc.). 

Producing a stable analytics conclusion out of such data was and will remain a big challenge. 

Analyzing unstructured data 

Analyzing Unstructured data that is available in legacy systems and other various forms such as paper, in 

tacit will be challenge due to non availability of centralized system from where analytics systems can pull 

data to give meaningful insights. Lot of time need to be spent in data cleaning, data structuring and by the 

time data becomes ready to produce useful report, new set of data arises which has capability to change 

the meaning of the data produced earlier 

Variety and Interoperability of Data 
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Currently the data has variety of sources such as legacy system, cloud platforms, customized platforms 

etc. So, to analyze such data, it is essential to have the data in single format and at the same time 

interoperable despite its source of origin. 

Let us take the example of healthcare sector in India where lack of interoperability is not able to generate 

the value for our people. The current healthcare industry has multiple closed ecosystems where 

information is locked. Every private healthcare provider has its own diagnostic / pathology and 

partnership labs to solve patient’s problem. Such data resides in silos due to walled approach. And this 

data is hardly shared with any other healthcare providers partly to lock the patient in the system and 

leverage it for future use. Sometimes such data is also not made available to patient himself. The other 

reason could be the fear of losing the monopoly to algorithms/ machine learning tools if the data is shared. 

Today, the incidence rate of cancer is increasing in India. If all the private healthcare industry decides to 

share the cancer diagnostic data seamlessly, an algorithm can also do it. So, the interoperability lies at the 

heart of the problem and is preventing India to develop patient centric health care system. 

However, the early passage of PDP bill (Privacy and Data Protection Bill) by Indian Parliament should 

address this challenge. The PDP bill is discussed in detail in one of the following sections. 

Data Collection Methods in Private Indian Enterprises 

As per Deloitte research across Indian private enterprises, it is found that collecting, using, and sharing 

personal data is governed by complicated privacy policies often difficult to read and understand. 

However, there are very few enterprises who seek “explicit and transparent” consent. The lack of 

awareness about the personal data among many users help these enterprises to continue with such 

practices. Following are the data sources 

 

 
 

 
Data collection ecosystem 
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Many private enterprises collect data without well-defined use cases and hence only 5-10% of the 

collected data is useful. Such wasteful practices result in unrelated data collection and inflated storage 

costs. Also, private enterprises frequently share personal data of consumers with data brokers and 

consumers are seldom aware about the number of third-party entities accessing their personal data. Such 

practices dent the confidence of consumers who want to share genuine information, issues, and feedback. 

Legal Framework / Data Privacy Laws 

Data Protection refers to the set of privacy laws, policies and procedures that aim to minimise intrusion 

into one's privacy caused by the collection, storage, and dissemination of personal data. Personal data 

generally refers to the information or data which relate to a person who can be identified from that 

information or data whether collected by any Government or any private organization or an agency. 

According to article in Mondaq  “The Constitution of India does not patently grant the fundamental right 

to privacy. However, the courts have read the right to privacy into the other existing fundamental rights, 

i.e., freedom of speech and expression under Art 19(1)(a) and right to life and personal liberty under Art 

21 of the Constitution of India.” 

The data protection law encourages domestic and foreign businesses to enable outsource or build the 

competency in house in the data analytics.Currently, India does not have any formal law to tackle the data 

privacy issues. This is the biggest impediment at least for foreign firms to outsource to India. As the 

firsthand experience while working with healthcare giant Roche Diagnostics, Switzerland, the company 

has classified India as high-risk outsourcing destination from legal risk perspective. This as they have 

stated is due to absence of EU equivalent GDPR (General Data Protection Regulation).And unpredicted 

events such as COVID pandemic which has forced organization to go digital has in a way forced the 

Governments across world to take notice of data protection regulations. India is also no exception. In 

January 2021, India took significant steps in tech policy and data regulation. It covered sectors such as 

non- personal data, health data, financial data, e-commerce, and other consumer facing services. The PDP 

(Privacy and Data Protection) bill which GOI has drafted is a right step to regulate the data and below are 

some of the highlights of various privacy bills under consideration by GOI  

Proposed Privacy Law: Inspired by the EU’s GDPR, PDP Bill was introduced in year 2019 to address the 

data privacy issues which is currently under purview of Information Technology Act, 2000. The joint 

parliamentary committee (JPC) is still reviewing the bill and proposed some modifications, but it is 

expected that the bill would take considerable time to become law. The scope of bill includes non- Indian 

organizations, Indian organizations, personal and non-personal data. 

Proposed Non-personal Data Framework: NPD (non-personal data) framework studies the issues related 

to NPD and to make specific suggestions to central government. This framework provides guidelines for 

data collection entities and separate treatment for “High Value Datasets” (data pertaining to public good 

and community) 

DEPA for Fintech: Data Empowerment and Protection Architecture (DEPA) is policy framework released 

by NITI Aayog for fintech sector. This policy is aimed towards consent-based data sharing in the fintech 

sector. Through this framework customers will be able to share their financial data securely across banks, 

mutual funds, insurers, tax collectors, and pension funds. Similar frameworks are on anvil for healthcare 

and telecom sectors. 

Data Sharing policy for Health Sector: HDM (Health Data Management) Policy inspired from PDP bill to 

govern data in healthcare ecosystem. It establishes the consent-based data processing and sharing. HDM 
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policy once implemented will have impact on medical and pharmaceutical industry as it will have 

compliance obligation guidelines.However, HDM policy has some overlaps with PDP bill so potential 

conflicts are anticipated. 

Repercussions due to Impending E-commerce policy: e-commerce policy which is still under works by 

GOI proposes sweeping changes such as sharing of source codes, algorithms, cross border data flow, anti-

piracy, and other non-personal data etc. with government. 

Data governance for Motor Vehicle Aggregators: Motor Vehicle Aggregator Guidelines 2020 was 

published in Nov 2020 to regulate the business transport aggregators. Under the guideline, data generated 

on aggregators app must be stored in India for minimum 3 months to maximum 24 months. The data 

needs to be shared with State Government as per law and data cannot be shared without consent of 

customer. 

Required Skillsets and India’s Standing 

To reap the benefits of data analytics stream, it is essential to understand the interdependencies of key 

domains and skillsets. Broadly, the domains can be classified into three categories. 

• Skills in Business Domain focus is on the practice and day-to-day running of a business. Some 

examples of this domain are accounting, finance, marketing, and sales etc.  

• Skills in Technology Domain focus is on the creation, maintenance, and scaling of computer systems 

and software. Some examples of this domain are databases, computer networking etc. 

• Skills in Data Science Domain focus is on capturing and utilizing the data generated within a business 

for decision-making and/or powering underlying products and services. The data science skills can be 

further subdivided into 

� Data Management comprises everything related to managing and accessing data for reporting, 

analysis, and model building. Sample skills: Cloud APIs, Hadoop  

� Data Visualization involves the creation and study of visual representations of data to 

communicate information clearly and efficiently. Sample skills: Tableau, Plotting Data  

� Machine Learning creates algorithms and statistical models that computer systems can use to 

perform a specific task without explicit instructions. Sample skills: Multi-Task Learning, Deep 

Learning  

� Math is the study of numbers and their relationships, applying these principles to models of real 

phenomena. Sample skills: Calculus, Linear Algebra 

� Statistical Programming is the set of programming languages and tools used to create statistical 

models and algorithms. Sample skills: R, Python  

� Statistics deals with all aspects of data collection, organization, analysis, interpretation, and 

presentation. Sample skills: Regression, AB Testing 

It is pertinent to note that professionals with business, technology and data science skills will have 

competitive edge in the global workforce. 

As per Global Skills Index Report, Coursera, India lags in data science skills particularly in data 

management skills. In Data Science domain, India ranks at 51 globally and at 12 among APAC countries. 

However, with in data management competency, India ranks at 58 globally and at 15 among APAC 

countries. 
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However, India surges ahead China in business and technology skills ranking. Within business domain, 

India ranks at 34 globally compared to China’s rank of 45. Within Technology domain, India ranks at 40 

globally compared to China’s rank of 50. 

 

 
Table 1: India's rank at APAC and Global level in key domain 

 

Based on above assessment, India is currently facing challenges in Data science skills which can be 

attributed to brain drain reducing supply of skilled workers locally which is further exacerbated by partly 

poor quality of STEM education. 

As per Banerjee et al (2013), for effective usage of data analysis, the simultaneous presence of all three 

factors mentioned in Error! Reference source not found. is essential.According to a “towards data 

science” report , there is shortage of more than 93000 data scientists in India as on August 2020. Further, 

even if some people get trained, the business acumen to process the data and deduce meaningful results 

doesn’t lay with many people leading to shortage of experts in this field which in itself is becoming 

challenge to Indian government given the task of putting India ahead in Sustainable Development Goals 

list.Data analytics which can help government to prioritize area of exact emphasis and create policy 

around it so that India improves rank in SDG which is much critical for Indian economy. 

 

Figure 1: Analytics skill sets 

 

RECOMMENDATION TO TACKLE CHALLENGES 

Faster Adoption of 5G Network 

The key benefits of 5G network are better reliability and latency. On adoption of 5G network, faster 

exchange of information among connected systems is expected. The ground is already set with the sudden 

explosion of IoT devices in the Indian market. The number of IoT devices expected to increase from 200 

million unit in 2016 to 2.7 billion unit in 2020 . Such IoT devices will enable system to collect and 

organize data automatically. Manually performing this process is far too time-consuming. An automated 

system will allow employees to focus on productive/core activities rather than processing the data. A data 

system that collects, organizes, and automatically alerts users of trends will help solve the issue of 
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timeliness and accuracy of data. Due to automation, it would be possible to generate intelligent business 

reports with satisfaction and in lesser time. With real-time reports and alerts, decision-makers can be 

confident they are basing any choices on complete and accurate information. So, it is essential for India to 

lay a roadmap to faster adoption of 5G network. However according to parliamentary panel, India is still 

in preparatory phase and sufficient groundwork is still under progress for launch of 5G network.  

Data Centralization and Accessibility 

A comprehensive and centralized system will solve problem of accessibility. Such system will save time 

spent accessing multiple sources and it will also allow cross-comparisons while ensuring data is 

complete.Decision-makers and risk managers need access to all an organization’s data for insights on 

what is happening at any given moment, even if they are working off-site. Adatabase useful to all 

employee in decision making role with appropriate authorization and ability to access from anywhere will 

resolve accessibility issues. 

Well Deliberated and Contemporary Data Privacy Law 

India presently does not have any express legislation governing data protection or privacy. However, the 

relevant laws in India dealing with data protection are the Information Technology Act, 2000 and the 

(Indian) Contract Act, 18725. A codified law about data protection is likely to be introduced in India 

soon. The (Indian) Information Technology Act, 2000 deals with the issues relating to payment of 

compensation (Civil) and punishment (Criminal) in case of wrongful disclosure and misuse of personal 

data and violation of contractual terms in respect of personal data5. A codified law around data protection 

or privacy will bolster confidence in data security, authenticity and avoid misuse. We have already 

discussed (refer Legal Framework / Data Privacy Laws) at length on the PDP bill being deliberated in 

Indian parliament. With mushrooming online marketplaces, offshore and onshore data analytics in India, 

we feel there is an urgent need to implement well deliberated and contemporary PDP bill. 

Strategies to Build and Improve Skillsets 

India doesn’t have good pool of experts in analytics area with business acumen required to provide 

meaningful information to government so that effective policies to make India a 5 trillion dollar economy 

by 2025 and also its ranking on SDG indicators look much better than present rank of 117. 

Fundamentally, the STEM education forms the base for future skillsets for data analytics professionals. 

The STEM education is relatively new concept in India. A robust STEM education equips individuals 

with critical thinking, innovation, and problem-solving skills. As per research, student develop interest in 

STEM fields at average age of eight. Traditionally, our education system promoted rote learning while 

STEM education emphasizes on Do-It-Yourself approach to promote learning. We therefore hopeful that 

GOI’s National Education Policy will bring desired change in the education system. However, it is long 

term solution so in short term,collaborating with premier institutes such as IIMs/IITs on preparing sound 

business knowledge bended with technical knowledge possessing talent pool will help significantly in 

overcoming challenges. 

Take Cues from Decision in “SCHREMS II” by EU Courts 

The Austrian complainant, Schrems contested the privacy shield, seamless EU-US personal data transfer 

mechanism, in CJEU (Court of Justice European Union). The outcome of the decision (invalidating the 

privacy shield) had significant impact not only EU-US but also EU- other country data transfers and 

transferee countries will have to update the laws pertaining to data transfer mechanisms. Due to 

invalidation of privacy shield, the transferee must demonstrate that it is adhering to the Standard 
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Contractual Clauses in GDPR respecting individual rights. If transferee is found to be in violation, then 

the data sharing and transfer mechanism is to be immediately stopped. So, India will have to update its 

data privacy laws taking into consideration the Standard Contractual clauses to ensure data sharing and 

transfer between EU and India for data analytics work. 

Role of Indian Judiciary on Data Regulation 

The Kerala high court in case of Balu Gopalakrishnan Vs State of Kerala passed order on April 2020 on 

export of COVID 19 related data by State of Kerala to US based data analytics firm Sprinklr. In its 

judgement, high court directed the State of Kerala to take measures such as anonymizing the data, consent 

to data sharing and return of data once contractual obligation ends. This judgement will have far reaching 

consequences to data analytics firms in India and foreign firms. Such historic judgements should be part 

of formal laws which we are hopeful but if not must be included in PDP Bill. 

Offshore-Onshore Model to Circumvent Offshore Analytics Issues 

Currently, physical barriers for technology services companies based out of India faces challenge of not 

being part of key decision maker meetings happening at client location (onshore). This aspect creates 

information asymmetry and leads to mediocre data analytic solution. Generally, services firm nowadays 

employ a strategy to locate an expert resource at client location and rest of the team is located at offshore 

location. The onsite resource acts as proxy to client in a sense that he attends the important decision 

maker’s meeting to get the clarity on the context and passes this information to offshore team. The expert 

acts more of a facilitator and communication bridge to save valuable time of client. Such offshore-onsite 

model can be recommended and resource rotation through such model will help in building the desired 

skills in the team. 
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ABSTRACT  

Application of Orange Data mining software determines the clusters and plots the graph of vaccination data for 

various states and union territories. The file widget open new vaccination data set and perform k-mean++ from 

2 to 9 with silhouette distance. The silhouette scores and cluster information are achieved. The three zones are 

visualized and the zones are labeled as green, Blue and Red: The green zone indicates that states and union 

territories are high vaccinated, the blue zones indicates states and union territories are Moderatelyvaccinated, 

and the red zone are low vaccinated states and union territories of India. The states and union territories' of 

Sikkim, Tripura, Ladakh and Lakshadweep have low population butfalls in high vaccinated states of first and 

second dose. The states and union territories of Goa, Mizoram, Delhi, Arunachal Pradesh, Chandigarh, 

Uttarakhand, Gujarat, Rajasthan, Kerala, Jammu and Kashmir, Dadra and Nagar Haveli, Damn and Diu, 

Himachal Pradesh, Chhattisgarh and Andaman Nicobar Islandshavediverse population and come in the 

category of low vaccinated states of first and second dose. The states and union territories of Manipur, 

Meghalaya, Nagaland, Odisha, West Bengal, Haryana, Karnataka, Andhra Pradesh, Maharashtra, Telengana, 

Jharkhand, Madhya Pradesh, Punjab, Assam, Uttar Pradesh, Tamil Nadu Puduchery and Bihar have high 

population and are moderately vaccinated states of first and second dose. The open source tools like Orange 

Data mining found useful for exploring appropriate and applicable functions in data science. Several partitions 

with different values of k- number of clusters or partitions are recommended to review along with cluster quality 

index for optimum solution. K-means can be adapted to micro-level demarcation of containment zones.  The 

clusters formed based on COVID-19 patient's vaccination data using Data Science techniques specifically K-

means will be active, unbiased, accurate, visible, economic and easy to apply. 

Keywords: k-means++, Visualization, COVID-19, Vaccination of first and Second Dosage and Indian States and 

Union Territories. 

 

1. INTRODUCTION 

 COVID-19 is a Data Science issue” (Callaghan, 2020) the comprehensive article gives various 

ideas and inspiration to think about the data and how it can be effectively used in current pandemic 

situation.Quarantine is nothing but the separation and restriction of movement or activities of 

persons who are not ill but who are believed to have been visible to infection, for the purpose of 

avoiding transmission of diseases. People are usually isolated in their homes, but they may also be 

quarantined in community-based accommodations. Considering the increasing volume of number of 
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patients and limited community-based facilities, most of the people are being asked to quarantine in 

their homes. 

The Cluster Containment Strategy would be to control the disease within a defined geographic area 

by early vaccinated of populations, breaking the chain of transmission and thus preventing its spread 

to new areas. This would include vaccinations percentage of first and second dose and total 

measures. Many sensitive factors are associated while defining the containment zones in states and 

union territories. 

Manually defining these continuously changing clusters in size and location may not be feasible. The 

techniques from data science especially k-means can help in this situation by defining the clusters as 

vaccinated states and union territories. The objective of this paper is to bring neutrality and accuracy 

in creating the COVID-19 vaccination zones dynamically and consistently using k-means technique 

of Data Science. This is desirable to get continuous updating on accurate and latest micro-level 

isolation information of vaccination zones to plan the unbiased strategies for separating contacts of 

COVID-19 patients from community. The scope of this research paper is to apply K-means 

technique from Data Science on the collected vaccination data like first, second dose of vaccine and 

total population to define and visually plot the vaccinated states to visualize on the actual map. 

 

2. REVIEW OF LITERATURE 

 According to Wollersheim, 2020 during the COVID-19 crisis the field of Data Science is in 

epicenter. Maximum of the public is interested, watching and looking forward the statistical analysis 

and epidemiology graphs and sharing the same in social media on a large scale. The probability from 

Data Science is very high. Data Science is adeveloping field consists of number of appropriate and 

useful tools, functions and techniques. 

Singh et.al. 2018, suggested the cluster containment strategy for Zika virus outbreak was found 

effective in Rajasthan, India.  It explained that how surveillance strategies are used to control the 

disease from spreading beyond containment zones of 3 km radius. The article gives emphasis on 

creating containments to prevent the outburst of disease, however it does not explain about how to 

make these zones quickly and accurately. In their paper (Maier &Brockmann, 2020) it is also 

explained about the effective containment to control COVID-19 cases in Chinaspecifically.  The 

model which they explained in their paper captures both isolation of symptomatic infected 

individuals and other population isolation practices. The focus of the research is on contagion 

process and general effects as well as significance of the containment. Their research work implies 

and supports the need to define the containment zones accurately.  

Manimannan G. et.al (2021),predicts and classifies the data of COVID-19 based on four machine 

learning algorithm with four major parameters namely confirmed cases, recoveries, deaths and active 

cases. The secondary sources of database were collected from Ministry of Health and Family Welfare 

Department (MHFWD), from Indian State and Union Territories up to March, 2021. Based on these 

background, the database classified and predicted various machine learning Algorithm, like SVM, kNN, 

Random Forest and Logistic Regression. Initially, k-means clustering analysis is used to perform and 

identified five meaningful clusters and is labeled as Very Low, Low, Moderate, High and Very High of 

four major parameters based on their average values. In addition the five clusters are cross validated using 

four machine algorithm and affected states are visualized in the table with help of prediction and 
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probabilities. The different machine learning models cross validation and classification accuracy are 88%, 

97%, 91% and 91%. The Classification of States and Union Territories were named as Very Low 

Affected (VLA), Low Affected (LA), Moderately Affected (MA), Highly Affected (HA) and Very Highly 

Affected (VHA) States and Union Territories of India by COVID-19 cases. Maharashtra is correctly 

classified as Very High Affected States, Delhi, Uttar Pradesh and West Bengal falls in Moderately 

Affected States, Assam, Bihar, Chattisgarh, Haryana, Gujarat, Madhya Pradesh, Odisha, Punjab, 

Rajasthan and Telangana falls in Low Affected States and Tamilnadu, Kerala, Andhra Pradesh and 

Karnataka forms a group of highly affected States. Remaining States and Union Territories falls in Very 

Low affected by Covid-19 Cases. 

 

2.1 Application of Data Science 

Data science generally has a five-stage lifecycle and is given below (Figure 1). 

 

 
Figure 1. Five Stage of Data Science 

 

The article (Weatherill & Burton, 2009) explains how the seismic source zones were created using k-

means cluster analysis for the Aegean region. The paper describes the significance of applying k-

means algorithm for hierarchical cluster analysis and was found useful for partition regions based on 

observed seismicity to have consistent approach to source model development.  

Clustering of various Indian states and union territories is prepared which gives the Silhouette 

distances between each pair of the cases in Table 1. 
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Table 1. Cluster Information using K-means++ with silhouette distance 

 

The main objective of this research paperis to explore the applications of k-means technique of Data 

Science influence towards defining, visualizing and maintaining the vaccination states impacted by 

COVID-19 

 

3. DATA COLLECTION 

 The secondary source of vaccination data were collected from Kaggle.com website, up to April 30.04. 

2021 based on 2011 population. The original data consist of Total population, First dose, second dose, 

first dose percentage, second dose percentage and cumulative percentage of Indian states and union 

territories. In this research paper used only three parameters and they are Total population, first dose 

percentage and second dose percentage. 
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4. METHODOLOGY 

 In methodology, the researcher use python based orange data mining software to identify the 

vaccinated states of India using k-means clustering techniques with help of silhouette distance matrix.  

 

The widget applies of k-Means clustering algorithm to the data and give outputs as a  new data set in 

which the cluster index is used as a class attribute. The original class attribute, if it exists, is moved to 

meta attributes. Silhouette distance scores of clustering results for various k are also shown in the widget 

(Table 2). 

 
 

Table 2. K-means of Silhouette Scores 

 

4.1. Proposed Algorithm:  

The proposed orange data mining algorithm to execute k-means clustering step by step:  

Step 1: Initially, Select the number of clusters with fixed algorithm of clusters data in specified number 

of clusters. 

Step 2: Select the initialization method of k-means++ and first center is selected randomly, subsequent 

are chosen from the remaining points with probability proportioned to squared distance from the closest 

center.  

Step 3: The algorithm is  torun the maximum of iteration with each cluster, it can be set manually. 

Step 4: The widget outputs a new vaccination data set with appended cluster information and select how 

to append cluster information and name the column. 

Step 5: If Apply Automatically is ticked, the widget will commit changes automatically. Alternatively, 

click Apply. 

Step 6: Produce a report. 

Step 7: Check scores of clustering results for various k. (Figure 2) 
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Figure 2. K-means Data Mining Work Flow Widget 

 

 
Figure 3. Data Visualization of three clusters of Indian States  

and Union Territories (Vaccination Data) 
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Figure 4. Data Distribution of three clusters of Indian States  

and Union Territories (Vaccination Data) 

 

 
Figure 5. Data Distribution (Cluster 1) of Indian States  

and Union Territories (Vaccination Data) 
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Figure 6. Data Distribution (Cluster 2) of Indian States  

and Union Territories (Vaccination Data) 

 

 
Figure 7. Data Distribution (Cluster 3) of Indian States  

and Union Territories (Vaccination Data) 
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5. DISCUSSION 

 Application of Orange Data mining software is to determine the clusters and visualize the graph of 

vaccination data for various states and union territories. The file widget opens newvaccination data set 

and perform k-mean++ from 2 to 9 with silhouette distance. The silhouette scores are displayed in the 

above Table 2. The results of Cluster information is exhibited in Table 1. The k-mean clusters achieved 

three cluster zones of states and union territories based on the first and second dose vaccination. The three 

zones are visualized in the figure 3to7. The green zone states and union territories are high vaccinated, the 

blue zones states and union territories are Moderate vaccinated states and union territories and the red 

zone are low vaccinated states and union territories of India. 

The states and union territories' of Sikkim, Tripura, Ladakh and Lakshadweep have low population and 

falls in high vaccinated states of first and second dose. The states and union territories of Goa, Mizoram, 

Delhi, Arunachal Pradesh, Chandigarh, Uttarakhand, Gujarat, Rajasthan, Kerala, Jammu and Kashmir, 

Dadra and Nagar Haveli, Damn and Diu,  Himachal Pradesh, Chhattisgarh and Andaman Nicobar Islands 

have adequate population and falls in Low  vaccinated states of first and second dose. 

The states  and union territories of Manipur, Meghalaya, Nagaland, Odisha, West Bengal, Haryana, 

Karnataka, Andhra Pradesh, Maharashtra, Telengana, Jarghant, Madhya Pradesh, Punjab, Assam, Uttar 

Pradesh, Puduchery and Bihar have high population but falls in moderately vaccinated states of first and 

second dose. 

5.1 Findings and Recommendations 

The open source tools like Orange Data mining isfound useful for exploring the appropriate and 

applicable functions in data science. Several partitions with different values of k- number of clusters 

or partitions are recommended to review along with cluster quality index for optimum solution. K-

means can be improved to smallseparation of suppressionstates and union territories.   

 

6. CONCLUSION 

To attainuniqueresults of vaccination assessment using k-means cluster and achieved three 

meaningful clusters for vaccination data set of Indian states and union territories. It is recommended 

that the Data Science techniques such as K-means can be adopted to define the micro-level 

segregation of vaccination zones and manage them effectively. The clusters formed based on 

COVID-19 patient’s vaccination data using Data Science techniques specifically K-means will be 

active, unbiased, accurate, visible, economic and easy to apply. 
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ABSTRACT : 

This Paper is based on the concept of a 'Continued Differential Operator, that makes easy the process of 

integration contained in unpublished work 'Differentiation by a method of Continued Differentiation' by (Late) 

Parameswara Iyer N Vaikom, This is similar to the Differential operator D. Using this concept, explicit formulae 

for Ordinary Differential Equations (ODE) with constant coefficients, in the form of )().()( xxfyDf φ= ; 

where )(xf  is n
th 

degree polynomial and )(xφ is axaxax sinh,cos,sin  or axcosh  could be derived.  

Keywords: Linear Differential Equations, Particular Integral, Direct formulae, Differential Operator, 

Continuous Differential Operator. 
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1. INTRODUCTION 

 This paper is based on the research work carried out by author’s Father Late Shri Parameswara Iyer N 

Vaikom. Though the work was compiled in a book form in the year 1976, the manuscript remained 

unpublished neither as research papers in journals nor as a printed book. The work mainly deals with the 

direct solution of certain differential equations with constant coefficients. The concept underlying the 

derivation of these results is briefly discussed in this paper.     

Solution of certain ‘Ordinary Differential Equations (ODE)’ with is made simple and handy with the 

introduction of the concept of “Differential Operator”. Differential Operator is usually denoted as ‘D’ 

which stands for
dx

d
. 

Differential equations are transformed to algebraic expressions by making use of this operator ‘D’. For 

example, a standard form of an ODE becomes )()( xyDf ψ= , where )(Df  represents the expression 

involving the operator ‘D’ depending on the differential terms; ‘y’ represents the dependent variable and 

)(xψ  represents the function of independent variable, ‘x’.  The solution of the differential equations 

contains two parts i.e. complimentary function (CF) and Particular Integral (PI). Complimentary function 

can be easily found when the ODE is written in the above-mentioned standard form, since it depends only 

on the expression )(Df  and derivable from the ancillary equation. However, Particular Integral (PI) is 
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problem specific and the method of solution for an equation will be varied depending on the nature of

)(Df  and )(xψ .  

Considering the equations  ax
dx

dy
sin=   and ax

dx

dy
cos=  

Particular Integral  

( ) ( )
( )22

cos.
sinsin

1
.sin

a

axa
ax

D

D
ax

D
dxaxy p

−
==== ∫    ………………….. (1) 

Similarly, 

( ) ( )
( )22

sin.
coscos

1
.cos

a

axa
ax

D

D
ax

D
dxaxy p

−

−
==== ∫    ………….……….. (2) 

This is a well-established procedure that when 2D  operates on sinax or cosax becomes. 2
a− . Similarly,

2D on sinhax or coshax can be found by substituting 22
aD = . 

This procedure  helps to integrate such functions easily as it could be converted to a ‘differential 

operation’ simply  by multiplying both numerator and denominator with ‘D’, (or the conjugate of the 

factors of denominator function )(Df  since operator ‘D’ behaves like any other algebraic term).  

As an illustration, consider the following equations.  

1. xDy 3sin=  

Particular Integral could be found as follows. 
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However, the above advantage is lost when the right hand side (RHS) of the equation is a product of a 

polynomial with sin, cos, sinh or cosh. 

 For example when RHS is   xxxx cos,sin 23  or any similar expression the substitution with (-a
2
) for (D

2
) 

is not possible.  Thus while solving the equation, axxfDy sin).(= , the shortcut  of  substituting 

22
aD −=    does not work.  

 

The following proves the above statement. 

( ))sin).(
1

axxf
D

= ( )
( ) ( )
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a

xfDaxaxDxf
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D

D
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Thus, even for simple integration case, for instance xx
dx

dy
4cos2

= , it becomes necessary to carry out the 

conventional methods of integration by parts or Bernoulli’s method. This prompted to explore whether it 

is possible to retain the substitution 22
aD −=  in the case of sin and cos functions (or 22

aD =  in the case 

of sinhax or coshax functions)) in the denominator so as to have an easy solution.  

Present paper presents the possibilities of retaining the advantage of substituting 22
aora +−  as the case 

may be, in the denominator so as an integration of such functions also could be conveniently done simply 

by differentiation. 

 

2. CONTINUED DIFFERENTIAL OPERATOR 

Consider the Integration of ∫ axdxxf sin)(  

Using integration by parts,  

( )∫ ∫ ∫ ∫−= dxaxdxxf
dx

d
axdxxfaxdxxf .sin)(sin)(sin)(   

By using operator ‘D’, the equation transforms to  

( ) ( ) { } ( )





−= )sin

1
)(

1
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1
)(sin)(

1
ax

D
xfD

D
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D
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D
             ………………………….. (1) 

In both terms where D is operating on “sin ax”, independently and it can be converted as   
2

sin

D

axD
 and 

equation (1) could be rewritten as follows  

          

( ) ( )
( )

{ }








−
−

=





−= )(sin)(

1
sin)(

1
sin)(

1
sin)(

sin)(
222

axDxDf
D

axDxf
a

ax
D

D
xDf

D
ax

D

D
xf

D

axxf
 

In the above equation ‘ 2D ’ in the denominator is substituted with ( 2
a− ) as it operates only on sin ax.  

The second term is a similar expression compared to the original term and it could be seen that the 

process can be repeated. It is also to be noted that all combinations of separate differentials of )(xf  and

axsin ; the case is also similar for axcos  and when axsin  is replaced by axsinh  or axcosh  22
aD =  

could be substituted and same technique could be adopted for the evaluation of the integral.  
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It be seen that if )(xf  is a polynomial of n
th

 degree, there will (n+1) terms in the Integral. Further it will 

be all combinations of separate differentials of )(xf  and axsin . The case with axcos  is similar. So also 

when axsin  is replaced by axsinh  or axcosh ; 22
aD =  could be substituted and same technique could 

be adopted for the evaluation of the Integral.  

The above result can be conceived in a different way by introducing a new concept of ‘Continued 

Differential Operator’, and let ‘∆’ represent a “Continued Differential Operator”. 

{ } { }

)(

)().()().(
22

a

xxf

D

xxfD

−

∆
=

φφ
; where ф(x) = axsin  (or axcos )  

In the above D
2
 is substituted by (

2
a− ) even though it a product of polynomial and sine function by 

replacing the D in the numerator by ∆ , a ‘Continued Differential operator’. 

 

In this particular case when ф(x) = axsin  (or axcos ) 
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Here D
2
 in RHS denominator is be substituted by (–a

2
) since a continuous differential operation is 

carried out.  Case when axsin  is replaced by axcos   is similar.   

Thus  
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Case when ф(x) = axsinh   or   axcosh ;-      
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An illustration by integrating xdxSinx 3.2∫  using the above concept is shown below. 
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The above concept ‘Continued Differential Operator’   could be efficiently deployed for deriving direct 

(general) formulae for finding Particular Integrals (PI) of certain types of ODEs and is discussed in detail 

in the above mentioned  manuscript . The types equations considered for deriving direct formulae are 

given below; however the formulae are not included in this paper. 

Type: I 

axxyD
nm sin=  (or cos ax, sinhax or coshax) 

Type III 

axxyaD
nm sin)( 22

=+ (or cos ax, sinhax or coshax) 

Type II 

axxyaD
nm sin)( 22

=− (or cos ax, sinhax or coshax) 

Type: IV 

axxybD
nm sin)( 22

=± (or cos ax, sinhax or coshax) 

 

3. CONCLUSION 

 The advantage of the proposed technique is that   the ‘Integrals’ of a product involving trigonometric 

or hyperbolic with polynomial expressions   could be worked out easily and directly. Moreover this can 
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be easily extended to higher orders though this is not illustrated in this paper. The tediousness of 

successive Integration by parts is totally eliminated. Furthermore, the derived formulae even for the first 

order is very much simpler than Bernoulli’s formulae which is only an extension of Integration by parts  

and that is limited to first order alone In conventional methods repeated application of Integration 

becomes necessary while solving higher orders and it becomes more and more laborious as order becomes 

higher and higher..  

By adopting the method of continued differentiation for the types of equations cited above, explicit 

formulae can be derived which helps to find the Particular Integrals (PI) of each type of equation in two or 

three lines admirably reducing the steps, that too, for any order of the equation.  
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ABSTRACT  

Paper presents development of NHPP software reliability growth model in which fault detection rate follows S-

shaped curve. Various existing models considered constant non-removal fault rate function.  Proposed model 

incorporates imperfect debugging and non-removal fault rate function which depends on time. Existing models 

have been compared with proposed model using statistical tools R2 and MSE. Result validates model fits to given 

dataset better.  

Keywords : NHPP, Software Reliability, Imperfect debugging, Fault Removal Rate. 

 

1.  INTRODUCTION 

 SRGM is the mathematical model used to estimate the reliability of software system. Software is 

reliable if it works properly without failure under specified design specifications. Reliability depends on 

debugging process which involves fault detection and removal.  The foremost objective of software 

developer is to detect and remove maximum number of faults during testing phase so that reliability is 

maximized. Practically it is not possible to remove all faults completely. SRGM represents mathematical 

relation of number of faults detected at any point of time along with parameters which influence the 

reliability. A large number of models have been developed past thirty years to analyze reliability of 

software. 

 Various models have considered that faults detected are removed completely, known as perfect 

debugging, however  it has been observed that debugging process introduce some new faults in software 

system, known as imperfect debugging. This means reliability depends on imperfect debugging. Goel and 

Okumoto[2] developed first model involving imperfect debugging. Later on Yamada[13] proposed 

SRGM incorporating  S-shaped imperfect debugging and fault introduction rate. Ohba and Chou[6] 

discussed  effect of imperfect debugging on reliability of software system. Pham  et. al [9] developed 
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model based on imperfect debugging and S shaped fault detection rate. Xie and Yang [12] analyzed effect 

of imperfect debugging on software development cost.   

 Fault removal efficiency is another parameter which influences the reliability of software. It is the 

proportion of total faults removed by time ‘t’ . If non removed faults are present in software system then 

its reliability decreases.  Zang et al. [16] incorporated fault removal efficiency in software reliability 

growth model and estimated the reliability. Jones[5] developed model  involving fault removal efficiency. 

Kapur et. al. [4] analyzed the effect of fault removal efficiency on project and product type software in 

operational phase and estimated the reliability. Zhu and Pham [17] presented model involving non 

removal faults and imperfect debugging. They have considered constant non removal error rate function. 

Motivated by Zhu and Pham [17] model, in  this paper we propose a model with time dependent non 

removal error rate function along with imperfect debugging. This paper divided into 5 sections. Section 1 

is introduction. In section 2 some existing SRGM’s have been discussed. Section 3 presents model 

development. Section 4 deals with parameter estimation and comparison of proposed model with existing 

model. Finally conclusion is drawn in section 5.   

Notation 

A Maximum number of faults. 

m(t) Expected number of faults by time t. 

a(t) Fault content function. 

b(t) Fault detection rate per unit of time. 

�(�) Non-removed error rate per unit of time. 

  

Assumptions 

1.1 Failure intensity follows S-shaped curve. 

1.2 New faults introduced during debugging process. 

1.3 Failure detection rate is time dependent involving Non Homogeneous Poisson Process. 

1.4   �(�) Assumed to be time dependent function 

1.5   Fault detection is learning curve phenomenon. 
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2.  SOFTWARE RELIABILITY GROWTH MODELS 

2.1 Yamada et.al. model [15]: It is S-shaped and concave model involving imperfect debugging. This 

model is parameter dependent with assumption    �(0) = 0.  

�(�) = 	(1 + ��)(�� + exp(−��) − 1) 

2.2 PNZ model [9]: It is S- shaped and concave model with imperfect debugging. �(�) 

Is  given by    �(�) = ��(�����(���))����
����� 

��!��� (���) ,           �(0) = 0 

2.3 Pham [10] : It is also S-shaped and concave model incorporating dependency of parameters. 

 �(�#) = �# ≠ 0, �# ≠ 0. 
 �(�) = �# � &���

'�(��� exp)−�(� − �#)* + 	(�� + 1)+�� − 1 + (1 − ��#) exp)−�(� − �#)*,. 

2.4 Pham-Chang model[1]: S-shaped and concave model involving uncertainty in operating environment. 

Here �(0) = 0. 

        �(�) = �
��!��� (���) [(. + /)(1 − exp(−0�)) − ��

��� (exp(−	�) − exp(−0�)] 

2.5 Pham-Zhu model[16]: S-shaped and concave model involving imperfect debugging and non- removed 

faults. �(�#) = �# 

      �(�) = !���� (��)
�

2(�34)[���(��)���� (5�)]�678
9(

��� (5�)
 

 

 

3. MODEL DEVELOPMENT 

 Let at any time t proportion of maximum faults  to be detected  are   :;�<(�)
; =. Faults detected by time t 

are 0(�)�(�) :;�<(�)
; = . Also �(�)�(�)  are non-removed faults by time t. Involving above terms, the 

differential equation formulated by Zhu and Pham [17] as  

          
><(�)

>� = 0(�)�(�) :;�<(�)
; = − �(�)�(�)                                                                     (1) 

Assuming 0(�) = �
��!?3�@ , 0 > 0, B > 0.        /CDE    �(�) = '

���?3F@ , � > 0, 	 > 0  

Where   b and r are constant detection and error rate respectively. B and 	 are parameters of detection and 

error rate functions respectively. 

Also   �(�) → �    /D  � → ∞   
Using initial condition �(0) = /, solution of equation (1) can be obtained as  
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     �(�) = H(�)
I(�)                                                                          (2)             

Where                J(�) = KLM �N {0(P) − �(P)}RP�
S     

       = KLM �N { �
��!?3�@ − '

���?3F@}RP�
S   

 = �)!�?�@*(���)
(��?F@)(!��)                                                                                                   (3) 

 

Also                T(�) = �
; N KLM �N {0(U) − �(U)}RU�

S  0(P)RP�
S + �

� 

 = �
; N �)!�?�V*(���)

(��?FV)(!��) W �
��!?3�VX RP�

S + �
� 

 = (���)
;(!��)(��5) +(0 − .)	(Y�� − 1) − 0(Y(��5)� − 1), + �

�                          (4) 

 Using equations (3) and (4)  we get  expression of �(�) from (2). 

 

4.  PARAMETER ESTIMATION AND MODEL COMPARISIONS 

4.1 Parameter Estimation 

Parameters of models are estimated by using Non Linear Least Square Method. Data set collected by Zhu 

and Pham [17] is used.  

4.2 Model Comparisons 

Proposed model has been compared  with existing models using  following tools of Goodness of Fit 

(GoF). 

4.2.1 Coefficient of Determination Z[ 

Coefficient of Determination is also known as multiple correlation coefficient. It measures the correlation 

between the dependent and independent variables. Value of \] vary from 0 to 1. If  \] = 1 then  perfect 

fitting, \] = 0 no fitting, and \]  close to 1 good fitting. \]   is defined as 

    R] = ∑ )`a�bc*de
fg6

∑ )bf�bc*de
fg6

                 yi = �
j ∑ yk

j
kl�     

where yk is observed cumulative faults at time j and Yn estimated cumulative faults at time j. n is number 

of data points. Model fits better to given dataset if  R] close to 1.  

4.2.2 Mean of Square Error  MSE 

MSE  measures  the mean of squares of the deviation between estimated and observed data. It is defined 

as 
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MSE = �
j  ∑ )Yn − yi*]j

kl�         if   MSE close to 0 then model fits data better. 

Comparative analysis as follows: 

Table 1. Goodness of Fit 
  R] MSE 

Model 1 Pham-Chang model[1] 0.77 0.64 

Model 2 Zhu and Pham model [17]  0.89 0.53 

Model 3 Proposed Model 0.93 0.58 

 

5.  CONCLUSION 

 In this paper we have discussed NHPP software reliability growth model. Model incorporated 

imperfect debugging and time dependent non-removal fault function. Failure detection rate follows S-

shaped  increasing/decreasing phenomenon. Two existing models have been compared with proposed 

model using statistical tools R
2
 and MSE. For Model 3 value of  R

2
 is highest. However, MSE is 

relatively same with model 2. Result validates Model 3 fits to given dataset better.  
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ABSTRACT  

This paper deals with the numerical evaluation of a new Quintic Spline interpolation formula at certain 

intervening points in each of its sub-intervals. The functional values so obtained are compared with the 

corresponding actual values and the corresponding error examined. 

Keywords: Interpolation, Spline, quintic spline, boundary conditions, Numerical Analysis 

2010 AMS Classification:97N40, 97N50 

 

1. INTRODUCTION 

 Spline Interpolation assumes a significant part in Numerical Analysis, Computation, Integration, 

Differentiation and several areas in Physical Sciences. In Interpolating problems, Spline Interpolation is 

frequently liked to Polynomial Interpolation. Spline functionshave been introduced by I. J. Schoenberg 

[4] in 1946. A spline is a function characterized by piecewise polynomials, each piece being a polynomial 

function in their respective subintervals. A linear spline is characterized by piecewise first degree 

polynomials, quadratic splines by quadratic polynomials, cubic spline by cubic polynomials [1,2, 5], 

quartic spline by fourth degree polynomials [8], and a quintic spline by fifth degree polynomials [6]. In 

the sixteenth century, thecalculation of a quintic spline was a great issue in Algebra, while cubic spline 

and quartic spline has been determined [3, 7]. 

 A Spline is like an adaptable bend which comprises of a long piece of metal or other material, which 

might be bowed into a bend and fixed in position at various predefined points calledknots. These 

predefined points permit to draw a smooth bend or curve to another curve. A quintic spline being a 

polynomial of degree 5 has first derivative is a quartic function, second derivative cubic, third derivative 

quadratic and fourth derivative linear. In a quintic spline problem,the boundary conditions are applied to 

the function itself, and furthermore to the primary, second, third and fourth order subordinates of the 
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spline functions, considering the referred to information values  as the spline knots and at these knotsthe 

polynomial pieces are combined together. The continuity conditions are likewise applied at the knots. 

 

2. NATURAL QUINTIC SPLINE INTERPOLATION FORMULA [6] 

 Consider the given set of data values ���, ���, � = 0,1,2 … … . . �  of the function  � = ����. Let� =
��� , �����be i

th
 subinterval of���, ��� and ����� be the spline function defined in the interval��� , �����. A 

quintic spline is a polynomial of degree 5 and has continuous derivatives up to order 4 and the piecewise 

polynomials in each subinterval are of degree 5. 

���� =
��
�
��

�����,  �� < � < �������,  �� < � < ��...  �����,     ���� < � < ��

  

The boundary conditions for the quintic splines are, 

a) ������ = ��, = !� , � = 0,1,2 … . . � 

b) �������� = ���� = !���, � = 0,1,2 … . . � − 2 

c) ������,  �� ′����,  �� ′′����,  �� ′′′���� #�$ �� ′%���� are continuous. 

d) �� ′%���� = ����′%���� = 0  �&� !� = !� = 0 

e) ����′′���� = 0 

f� ����′′′���� = 0 
A brief outline of the derivation of coefficients of �����is given below for quick reference, details of 

which can be had from [6].�����being a quintic spline, its fourth derivative �� ′%���is linearso that it can be 

assumed as 

�� ′%��� = �
() ������ − ��!� + �� − ���!����, where ℎ� = ���� − �� , � = 0,1,2 … . . � − 1  (1) 

which when integrated four times gives 
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����� =
�
() 0�1)23�1�4

��� !� + �1�1)�4
��� !���5 + 6������ − ���� − ���� + 7������ − ���� − ��� +                 8������ −

�� + 9��� − ���           (2) 

where 6� ,  7�, 8�#�$ 9�’s are the coefficients obtained in terms of  !�’s 

Application of the boundary conditions (a) and (b) in (1), gives  

8� = :)() − ();
��� !�           (3) 

9� = :)23() −  ();
��� !���           (4) 

On differentiating (2) and applying the continuity condition, the following results are obtained 

�� ′��� =
 �
() 0− �1)23�1�<

�= !� + �1�1)�<
�= !���5 + 6��2����� − 2������ − 3�� + 4��� − ����  +                   7������ +

�� − 2�� + 8��−1� + 9�          (5) 

0();
�= − ()23;

�= 5 !��� + ()23;
��� �!��� − !���� − ();

��� �!��� − !��+�6���ℎ���� − 6�ℎ��� + �7���ℎ��� −
7�ℎ�� = ∆��� − ∆�, where ∆� = :)23�:)()         (6) 

Now differentiating (5)and applying the continuity condition, we get the following results: 

�� ′′��� = �
() 0�1)23�1�;

@ !� + �1�1)�;
@ !���5 + 6��2���� − 6� + 4��� + 7��−2�   (7)      

7� = 7��� − 0B)��5 !��� + 2�6���ℎ��� − 6�ℎ��for  � = 0,1,2 … . . � − 1    (8) 

Likewise, differentiation of (7), and application of the continuity condition gives the following : 

�� ′′′��� = �
() 0− �1)23�1�D

� !� + �1�1)�D
� !���5 − 66�       (9) 

6� = 6��� + 0()�()23�� 5 !���for  � = 0,1,2 … . . � − 1       (10) 

Using (8) in (6) the following recurrence relation is obtained 

ℎ�E�!� − 6!���� + ℎ���E �!��� − 6!���� + 1206���F� + 10ℎ��ℎ���!��� + 120�7���ℎ��� − 7�ℎ�� =
120�∆��� − ∆��           (11) 
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From these the values of 6�, 7� , 8� , 9�can be computed using which �����can be obtained from (2). 

 

3. ILLUSTRATION 

Consider a set of data points of the function � = H� ��� given by  

{(1.2, 0.1823215568), (1.7, 0.5306282511), (2.1,0.7419373447),(2.4, 0.8754687374),(2.8, 1.029619417), 

(3.0, 1.098612289),(3.3, 1.193922468)} 

ℎ� = 0.5, ℎ� = 0.4,    ℎ� = 0.3, ℎE = 0.4, ℎ= = 0.2, ℎJ = 0.3   
∆�= 0.6966133885    F� = −0.09 

∆�= 0.5282727342     F� = −0.07 

∆�= 0.4451046421    F� =    0.07 

∆E= 0.3853766996    FE = −0.12 

∆== 0.3449643574    F= =    0.05 
∆J= 0.3177005993 

6� = −9.251714   7� = 0.470195682 

6� = −5.0007109   7� = 0.343321  
6� = 1.795985095   7� = 0.0838189905 

6E = 1.262647595   7E = −0.2220442785  

6= = −0.304852405   7= = −0.0304852405 

6J = 0     7J = 0 

8� = 0.3646431136   9� = 1.592631499  

8� = 1.054506629   9� = 2.28983183 

8� = 2.656635243   9� = 2.932629237 
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8E = 2.222805443   9E = 2.523888543 

8= = 5.141827086   9= = 5.490622624 

8J = 3.653809947   9J = 3.979741562  

Hence the Natural Quintic Spline����� are 

����� = −8.502�J + 51.012�= − 113.177085�E + 108.512336�� − 34.487718� − 3.742,  

           � ∈ �1.2,1.7� 
����� =  −6.364237�J + 32.841016�= − 17.388454�E − 177.252048�� + 376.529917� −
226.628369,         � ∈ �1.7,2.1� 
����� =  20.877858�J  − 253.20098�=  +  1224.768808�E − 2955.506005�� + 3560.056374� −
1712.573708,         � ∈ �2.1, 2.4� 
�E��� =  3.292719�J − 42.179313�= + 216.131502�E − 553.741454�� + 709.714287� −
363.468389,         � ∈ �2.4, 2.8� 
�=��� =  −2.394488�J + 37.441582�= − 232.880505�E + 720.865255�� −  1110.961806� +
683.662832,         � ∈ �2.8, 3.0� 
�J��� =  −1.016175�J + 16.766882�= − 110.661423�E + 365.182696�� − 602.225517� +
397.802304,         � ∈ �3.0, 3.3� 
 

4. EVALUATION RESULTS 

Interval Value of  x 
Actual value  of O = PQ �R� 

Computed value 
Error   = Actual Value – 

Computed Value 

( 1.2, 1.7 ) 1.5 0.4054651 0.391739 0.013726 

(1.7, 2.1 ) 1.9 0.641853 0.633762 0.0080918 

( 2.1, 2.4 ) 2.2 0.788457 0.822591 0.0341336 

( 2.4, 2.8 ) 2.5 0.916290 0.913137 0.0031537 

( 2.8, 3.0 ) 2.9 1.064710 1.06269 0.0020207 

( 3.0, 3.3 ) 3.2 1.16315081 1.161339 0.0018118 
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5. CONCLUSION 

 The functional values computed at intervening points in each interval are seen to be close to the 

corresponding actual values with error as shown in the table. 
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ABSTRACT 

In this paper, the existence of fixed point for Kannan's type mapping and using other contraction mappings in a 

complete F-Metric space is proved. 
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1.  INTRODUCTION 

 The theory of metric spaces is the general theory which is used in several branches of mathematical 

analysis. In recent years, many interesting generalizations of the metric space concept appeared. Czerwik 

[4] introduced the notion of b-metric space. Gahler [7] introduced the notion of 2-metric space.  In 2018, 

Mohamed Jleli and Bassem Samet [8] introduced a new concept of Ϝ-metric space which is generalization 

of metric space. They also defined a natural topology on this space and studied their topological 

properties.  

 The popular Banach contraction principal [3] not only initiated the metric fixed point theory, but also 

played an important role in the development of nonlinear functional analysis and applied mathematical 

analysis. Due to the importance and application potential to several quantitative sciences, the 

generalizations of the Banach contraction principle have been investigated heavily by several authors in 

various distinct directions [1-12]. In this paper, we obtain fixed point theorems in Ƒ-metric spaces using 

Kannan’s type condition for the self mapping. 

Theorem 1.1.[3] (Banach contraction principal). Let (X,d) be complete metric space. Suppose T: X →X 

is Banach type contraction; i.e., there exists a non-negative number 1<λ such that d(Tx,Ty) λ≤ d(x,y) for 

all x,y in X. Then T has a unique fixed point in X. 

In 1969, Kannan [9] established fixed point theorem, which is different from Banach contraction principle 

as follows: 

Theorem 1.2.[9]: Let (X,d) be complete metric space. Suppose T: X →X is Kannan type contraction; i.e., 

there exists a non-negative number 
2

1
<λ such that 

 d(Tx,Ty) λ≤ (d(x,Tx)+d(y,Ty) for all x,y in X. Then T has a unique fixed point in X. 
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2.  ϜϜϜϜ -Metric space: 

 In 2018, Mohamed Jleli and Bassem Samet [8] generalized the concept of metric space as F-metric 

space as follows: 

Definition2.1.[8]:Let F be the set of functions f : (0, ) R+∞ → satisfying the following conditions: 

(Ƒ1) f is non-decreasing, i.e., 0 s t f (s) f (t)< < ⇒ ≤ . 

(Ƒ2) for every sequence { }nt (0, )⊂ +∞ , we have  

n n
n n
lim t 0 lim f (t )
→+∞ →+∞

= ⇔ = −∞ . 

Definition2.2. [8]: Let X be a nonempty set and let D : X X [0, )× → +∞ be a given mapping. Suppose that 

there exists (f , ) F [0, )α ∈ × +∞  such that  

(D1) (x, y) X X, D(x, y) 0 x y.∈ × = ⇔ =  

(D2) D(x, y) D(y, x), for all (x, y) X X.= ∈ ×  

(D3) For every (x, y) X X, for every natural number N 2,∈ × ≥ and for every ( )
N

i i 1
u X

=
⊂ with (u1,uN)=(x,y), 

we have 
N 1

i i 1

i 1

D(x, y) 0 f (D(x, y)) f D(u , u )
−

+

=

 
> ⇒ ≤ + α 

 
∑ . 

Then D is said to be an Ƒ-Metric on X, and the pair (X,D) is said to be an Ƒ-Metric space. 

Every metric space on X is an Ϝ-metric space on X with f (t) In t, t 0, and 0= > α = . 

But Ϝ-metric space may not be metric space. 

Example 2.3.[8]: Let X=N, and let D : X X [0, )× → +∞ be the mapping defined by 

( ) ( ) [ ] [ ]

( ) [ ] [ ]

2
x y if x, y 0,3 0,3 ,

D(x, y) for all x, y X
x y if x, y 0,3 0,3 ,

 − ∈ ×
= ∈

− ∉ ×
 

Then (X,D) is an Ϝ-metric space but not metric space. 

Definition2.4.[8]: Let (X,D) be an Ϝ-metric space. A subset O of X is said to be Ϝ-open if for every x in 

O, there is some r>0 such that B(x, r) O⊂ , where B(x,r)={y∈X: D(x,y)<r}. And a subset C of X is Ϝ-

closed if X\C is Ϝ- open. Then �� is a topology on X. 

Definition 2.5. [8]:Let (X,D) be an Ϝ-metric space. Let {xn} be a sequence in X is Ϝ- convergent to x in X 

if {xn} is convergent to x with respect to the topology ��. 

Proposition 2.6. [8]:Let (X,D) be an Ϝ-metric space. Let {xn} be a sequence in X, and x in X. the 

following statements are equivalent: 

(i) {xn} is Ƒ-convergent to x. 

(ii) n
n
lim D(x , x) 0.

→∞
=  

Definition2.7. [8]:Let (X,D) be an Ϝ-metric space.Let {xn} be a sequence in X. 

(i) {xn} is Ƒ-Cauchy, if n m
n,m
lim D(x , x ) 0

→∞
= . 
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(ii) (X,D) is Ƒ-complete, if every Ƒ-Cauchy sequence in X is Ƒ-convergent to certain element in X. 

Mohamed Jleli and Bassem Samet proved Banach contraction principle on Ƒ-metric spaces as: 

Theorem2.8. [8]:Let (X,D) be an Ϝ- complete metric space, and  T: X →X be a mapping and there exists 

)1,0(∈λ  such that D(Tx,Ty) λ≤ D(x,y) for all x,y in X . then T has a unique fixed point in X. 

In this paper, we will establish a new version of fixed point theorems for the Kannan type contraction 

principal on Ƒ-metric spaces. 

 

3.  MAIN RESULTS 

Theorem 3.1: Let (X,D) be an Ϝ-metric space and let T and T: X →X be a mapping. Suppose that the 

following conditions are satisfied: 

(i)  (X,D) be an Ϝ-complete metric space. 

(ii) There exists k>2 such that 

D(x,Tx) D(y,Ty)
D(Tx,Ty) , for all x, y X

k

+
≤ ∈ .                    (3.1) 

Then T has a unique fixed point in X. 

Proof: First we prove if T has fixed point, then it will be unique. Suppose T has two fixed points u and v,

vu ≠  in X i.e., D(u,v)>0 and T(u)=u and T(v)=v. 

Then from (ii), we have 

D(u,v)=D(Tu, Tv)
D(u,Tu) D(v,Tv)

k

+
≤ 0≤  

This implies u=v. 

Next, Let (f , ) F [0, )α ∈ × +∞ be such that (D3) is satisfied. Let 0ε > , there exists 0δ >  such that 

0 t f (t) f ( )< < δ⇒ < ε − α           (3.2) 

Let x0 in X be an arbitrary element and let define a sequence n{x } X⊂ such that T(xn)=xn+1 for natural 

number n. 

Without restriction of the generally we may assume that D(x0,x1)>0. Otherwise x0 will be a fixed point of 

T. 

Now, D(xn, xn+1) = D(Txn-1, Txn)
n 1 n 1 n nD(x ,Tx ) D(x ,Tx )

k

− −
+

≤  

⇒  kD(xn, xn+1) ≤  D(xn-1,xn)+D(xn,xn+1) 

⇒D(xn, xn+1)
1

k 1
≤

−
D(xn-1,xn) 2

1

(k 1)
≤

−
D(xn-2,xn-1) ≤ ……….

n

1

(k 1)
≤

−
D(x0,x1) 

Take 
1

k 1
λ =

−
. Thus λ <1. 

Thus we have D(xn, xn+1)
n

≤ λ D(x0,x1) 
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Also, 
nm 1

i i 1

i n

D(x , x )
1

−

+

=

λ
≤

− λ
∑ D(x0,x1),for m>n. 

Since, 
n

n
lim

1→∞

λ

− λ
D(x0,x1)=0, there exists some natural number N such that  

0<
n

0 1D(x , x ) , for all n N
1

λ
< δ ≥

− λ
         (3.3) 

Hence by (3.2) and (Ƒ1),we get 

nm 1

i i 1 0 1

i n

f D(x , x f D(x , x f ( ) . m,n N
1

−

+

=

 λ 
≤ < ε − α ≥  

− λ   
∑       (3.4) 

Using (D3) and (3.4), we obtain 

D(xn,xm)>0,m>n ≥ N 
m 1

n m i i 1

i n

f (D(x , x ) f D(x , x ) f ( )
−

+

=

 
⇒ ≤ + α < ε 

 
∑  

Which implies by (Ƒ1) that 

D(xn,xm)<ε , m>n ≥ N 

This proves that {xn} is Ƒ-Cauchy sequence. Since (X,D) is Ƒ-complete, there exist x* in X such that {xn} 

is Ƒ-convergent to x* i.e., 

n
n
lim D(x , x*) 0

→∞
= . 

Now, we shall prove that x* is a fixed point of T. we argue by contradiction by supposing that  

D(Tx*,x*)>0. 

Now, D(Tx*,xn+1)=D(Tx*,Txn)
n nD(x*,Tx*) D(x ,Tx )

k

+
≤  

⇒ k D(Tx*,xn+1) ≤ D(x*,Tx*)+D(xn,xn+1) ≤ D(x*,Tx*)+ n
λ D(x0,x1) 

Applying limit n → ∞ , we get 

k D(Tx*,x*) ≤ D(x*,Tx*) 

this implies Tx*=x*. 

as a consequence x* in X is unique fixed point of T. 

Theorem 3.2: Let (X,D) be an Ϝ-metric space and let and T: X →X be a mapping. Suppose that the 

following conditions are satisfied: 

(i)  (X,D) be an Ϝ-complete metric space. 

(ii) There exists k>2 such that 

D(x,Tx) D(y,Tx)
D(Tx,Ty) , for all x, y X.

k

+
≤ ∈                     (3.5) 

Then T has a unique fixed point in X. 

Proof: First we prove if T has fixed point, then it will be unique. Suppose T has two fixed points u and v 

in X i.e., T(u)=u and T(v)=v. 
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Then from (ii), we have 

D(u,v)=D(Tu, Tv)
D(u,Tu) D(v,Tu)

k

+
≤  

⇒ (k – 1)D(u,v) ≤  0 

This implies u=v. 

Let x0 in X be an arbitrary element and let define a sequence n{x } X⊂ such that T(xn)=xn+1 for natural 

number n. 

Without restriction of the generally we may assume that D(x0,x1)>0. Otherwise x0 will be a fixed point of 

T. 

Now, D(xn, xn+1) = D(Txn-1, Txn)
n 1 n 1 n n 1D(x ,Tx ) D(x ,Tx )

k

− − −
+

≤  

⇒D(xn, xn+1)
1

k
≤  D(xn-1,xn) 2

1

k
≤ D(xn-2,xn-1) ≤ ……….

n

1

k
≤ D(x0,x1) 

Take 
1

k
λ = . Thus λ <1/2. 

Thus we have D(xn, xn+1) 
n

λ≤  D(x0,x1) 

Also, 
nm 1

i i 1

i n

D(x , x )
1

−

+

=

λ
≤

− λ
∑  D(x0,x1),for m>n. 

Since, 
n

n
lim

1→∞

λ

− λ
 D(x0,x1)=0, there exists some natural number N such that  

0<
n

0 1D(x , x ) , for all n N
1

λ
< δ ≥

− λ
         (3.6) 

Hence by (3.2) and (Ƒ1),we get 

nm 1

i i 1 0 1

i n

f D(x , x f D(x , x f ( ) . m,n N
1

−

+

=

 λ 
≤ < ε − α ≥  

− λ   
∑       (3.7) 

Using (D3) and (3.7), we obtain 

D(xn,xm)>0,m>n ≥ N 
m 1

n m i i 1

i n

f (D(x , x ) f D(x , x ) f ( )
−

+

=

 
⇒ ≤ + α < ε 

 
∑  

Which implies by (Ƒ1) that 

D(xn,xm)< ε , m>n ≥ N 

This proves that {xn} is Ƒ-Cauchy sequence. Since (X,D) is Ƒ-complete, there exist x* in X such that {xn} 

is Ƒ-convergent to x* i.e., 

n
n
lim D(x , x*) 0

→∞
= . 

Now, we shall prove that x* is a fixed point of T. we argue by contradiction by supposing that  

D(Tx*,x*)>0 
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Now, D(Tx*,xn+1)=D(Tx*,Txn) 
nD(x*,Tx*) D(x ,Tx*)

k

+
≤  

⇒ k D(Tx*,xn+1) ≤ D(x*,Tx*)+D(xn,Tx*)  

Applying limit n → ∞ , we get 

k D(Tx*,x*) ≤ 2D(x*,Tx*) 

this implies Tx*=x*. 

as a consequence x* in X is unique fixed point of T. 

Theorem 3.3: Let (X,D) be an Ϝ-metric space and let and T: X →X be a mapping. Suppose that the 

following conditions are satisfied: 

(i)  (X,D) be an Ϝ-complete metric space. 

(ii) There exists k>2 such that 

D(x,Tx) D(y,Ty) D(y,Tx)
D(Tx,Ty) , for all x, y X

k

+ +
≤ ∈ .                  (3.8) 

Then T has a unique fixed point in X. 

Proof: First we prove if T has fixed point, then it will be unique. Suppose T has two fixed points u and v 

in X i.e., T(u)=u and T(v)=v. 

Then from (ii), we have 

D(u,v)=D(Tu, Tv)
D(u,Tu) D(v,Tv) D(v,Tu)

k

+ +
≤ 0≤  

⇒ (k – 1) D(u,v) ≤  0 

This implies u=v. 

Let x0 in X be an arbitrary element and let define a sequence n{x } X⊂ such that T(xn)=xn+1 for natural 

number n. 

Without restriction of the generally we may assume that D(x0,x1)>0. Otherwise x0 will be a fixed point of 

T. 

Now, D(xn, xn+1) = D(Txn-1, Txn)
n 1 n 1 n n n n 1D(x ,Tx ) D(x ,Tx ) D(x ,Tx )

k

− − −
+ +

≤  

⇒  k D(xn, xn+1) ≤  D(xn-1,xn)+D(xn,xn+1) 

⇒D(xn, xn+1)
1

k 1
≤

−
 D(xn-1,xn) 2

1

(k 1)
≤

−
D(xn-2,xn-1) ≤ ……….

n

1

(k 1)
≤

−
D(x0,x1) 

Take 
1

.
k 1

λ =
−

Thus λ <1. 

Thus we have D(xn, xn+1) 
n

≤ λ  D(x0,x1) 

Also, 
nm 1

i i 1

i n

D(x , x )
1

−

+

=

λ
≤

− λ
∑ D(x0,x1),for m>n. 
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Since, 
n

n
lim

1→∞

λ

− λ
D(x0,x1)=0, there exists some natural number N such that  

0<
n

0 1D(x , x ) , for all n N
1

λ
< δ ≥

− λ
         (3.9) 

Hence by (3.2) and (Ƒ1),we get 

nm 1

i i 1 0 1

i n

f D(x , x f D(x , x f ( ) , for all m,n N
1

−

+

=

 λ 
≤ < ε − α ≥  

− λ   
∑     (3.10) 

Using (D3) and (3.10), we obtain 

D(xn,xm)>0,m>n ≥ N 
m 1

n m i i 1

i n

f (D(x , x ) f D(x , x ) f ( )
−

+

=

 
⇒ ≤ + α < ε 

 
∑  

Which implies by (Ƒ1) that 

D(xn,xm)< ε , m>n ≥ N 

This proves that {xn} is Ƒ-Cauchy sequence. Since (X,D) is Ƒ-complete, there exist x* in X such that {xn} 

is Ƒ-convergent to x* i.e., 

n
n
lim D(x , x*) 0

→∞
= . 

Now, we shall prove that x* is a fixed point of T. we argue by contradiction by supposing that  

D(Tx*, x*)>0 

Now, D(Tx*,xn+1)=D(Tx*,Txn) 
n n nD(x*,Tx*) D(x ,Tx ) D(x ,Tx*)

k

+ +
≤  

⇒ k D(Tx*,xn+1) ≤ D(x*,Tx*)+D(xn,xn+1) +D(xn,Tx*) ≤  D(x*,Tx*)+ n
λ D(x0,x1)+D(xn,Tx*) 

Applying limit n → ∞ , we get 

k D(Tx*,x*) ≤ 2D(x*,Tx*) 

this implies Tx*=x*. 

as a consequence x* in X is unique fixed point of T. 

Theorem 3.4: Let (X,D) be an Ϝ-metric space and let and T: X →X be a mapping. Suppose that the 

following conditions are satisfied: 

(i)  (X,D) be an Ϝ-complete metric space. 

(ii) There exists k>2 such that 

1
D(Tx,Ty) max{D(x,Tx) D(y,Ty), D(x,Tx) D(y,Tx), D(x,Tx) D(y,Ty) D(y,Tx)}.

k
≤ + + + + Then T has 

a unique fixed point in X. 

Proof of the theorem is consequence of above theorems. 
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CONCLUSION 

In this paper, we obtain fixed point theorems using Kannan’s condition in F-metric space which is 

introduced by Mohamed Jleli and Bassem Samet and proved Banach contraction mapping.  
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